Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-surface-area activated carbon from pine cones for semi-industrial spray deposition of supercapacitor electrodes
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-8438-2581
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-3881-6764
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-1535-9476
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2022 (English)In: Nanoscale Advances, E-ISSN 2516-0230, Vol. 4, no 21, p. 4689-4700Article in journal (Refereed) Published
Abstract [en]

High surface area carbons are so far the best materials for industrial manufacturing of supercapacitor electrodes. Here we demonstrate that pine cones, an abundant bio-precursor currently considered as a waste in the wood industry, can be used to prepare activated carbons with a BET surface area exceeding 3000 m2 g−1. It is found that the same KOH activation procedure applied to reduced graphene oxide (rGO) and pine cone derived biochars results in carbon materials with a similar surface area, pore size distribution and performance in supercapacitor (SC) electrodes. It can be argued that “activated graphene” and activated carbon are essentially the same kind of material with a porous 3D structure. It is demonstrated that the pine cone derived activated carbon (PC-AC) can be used as a main part of aqueous dispersions stabilized by graphene oxide for spray deposition of electrodes. The PC-AC based electrodes prepared using a semi-industrial spray gun machine and laboratory scale blade deposition of these dispersions were compared to pellet electrodes.

Place, publisher, year, edition, pages
Royal Society of Chemistry , 2022. Vol. 4, no 21, p. 4689-4700
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:umu:diva-201421DOI: 10.1039/d2na00362gISI: 000866010700001Scopus ID: 2-s2.0-85142527057OAI: oai:DiVA.org:umu-201421DiVA, id: diva2:1715088
Funder
EU, Horizon 2020, 881603Available from: 2022-12-01 Created: 2022-12-01 Last updated: 2023-09-05Bibliographically approved
In thesis
1. Properties and applications of materials based on graphite oxide
Open this publication in new window or tab >>Properties and applications of materials based on graphite oxide
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Egenskaper och tillämpningar av material baserade på grafitoxid
Abstract [en]

Graphite oxide (GO) is a hydrophilic, layered material prepared by oxidation of graphite. In the first part of this thesis, we studied materials produced from GO by intercalation and functionalization. The second part of the thesis was focused on supercapacitor applications of high surface area carbons prepared from GO using chemical activation. 

A detailed study of acetylated GO (AcGO) was performed to verify structure and properties of this material. Reports from 1960’s suggested that AcGO has “pillared” structure. Our analysis showed that the AcGO demonstrates expanded structure due to acetylation but exhibits negligible specific surface area and should not be considered as a pillared material. 

Pillared reduced GO (prGO) was prepared by applying mild annealing to GO material pillared with tetrapod-shaped amine molecules. PrGO showed relatively high surface area due to remaining pillaring molecules in the structure. The prGO is hydrophobic and exhibits 100x improved conductivity compared to precursor. PrGO is one of few true pillared structures reported in literature so far, and the first ever prepared starting from pillared GO.

We also investigated the sorption of common dyes, methylene blue (MB), rose bengal (RB) and crystal violet (CV), by multilayered graphene oxide materials. We found that MB dissolved in ethanol intercalates the GO structure, as evidenced by significant expansion of inter-layer distance, and increase in weight due to sorption. In contrast to MB, GO is not easily intercalated by CV and RB dyes. We believe that the flat MB molecule shape allows easier insertion between GO layers compared to twisted and non-flat CV and RB molecules. Our results suggest that penetration into GO inter-layers depends not only on the size of molecules, but also on the shape.

Temperature dependent study of structures formed by Brodie GO (BGO) in liquid alkyl alcohols was performed for a set starting from undecyl alcohol (no. of C=11) and up to behenyl alcohol (no. of C=22). We found that BGO exhibits strong swelling in all molten alcohols in this set. Heating just above the melting point of alcohol results in expansion of inter-layer distance of GO due to intercalation of two layers of alcohol molecules in orientation perpendicular to graphene oxide planes (α-phase). Further heating of α-phase results in incongruent melting and formation of new phase with significantly smaller inter-layer distance and amount of intercalated alcohol (β-phase). The transition from α-to β-phase is distinctly different compared to swelling transitions previously observed for BGO in smaller alcohols (no. of C<10). A more detailed study of the BGO-C16 system revealed that β-phase has structure with alcohol molecules forming layers mostly in parallel to graphene oxide orientation.

In the second part of this thesis we studied activated reduced GO (a-rGO) as electrode material in supercapacitors. A-rGO is a high surface material (~3000 m2g-1) obtained by KOH activation of rGO. We developed formulations for stable aqueous dispersions of a-rGO optimized for preparation of electrodes by semi-industrial spray-gun deposition. The electrodes prepared by spray deposition showed energy storage parameters only slightly lower compared to lab scale blade-deposited electrodes. Spray-gun deposition might provide significant advantage for industry over conventional methods to prepare electrodes from a-rGO. 

We also applied KOH activation procedure, optimized for producing high surface area a-rGO, to biochar prepared from pine cones. Using this cost free “waste” picked up in Umeå region forest we produced high quality activated carbon very similar to a-rGO in terms of structure, pore size and surface area. Overall, the energy storage parameters of electrodes prepared using the activated carbon from pine cones were on the same level as a-rGO electrodes, which are produced by a lot more complex and expensive chemical treatments.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2023. p. 86
Keywords
Graphene, Graphite Oxide, Graphene Oxide, Swelling, Phase Transition, Intercalation, Activated Graphene, Activated Carbon, Supercapacitors, Neutron Reflectometry
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:umu:diva-214116 (URN)978-91-8070-102-0 (ISBN)978-91-8070-103-7 (ISBN)
Public defence
2023-09-29, NAT.D.480, Naturvetarhuset, Umeå, 13:00 (English)
Opponent
Supervisors
Available from: 2023-09-08 Created: 2023-09-05 Last updated: 2023-09-05Bibliographically approved

Open Access in DiVA

fulltext(1424 kB)232 downloads
File information
File name FULLTEXT01.pdfFile size 1424 kBChecksum SHA-512
0318c9548f34c3c5fd76310543879067043f4e29bc7c3905255b2af3f1af729a3e16953462ea5a78d7a1ac306cc62da7d3d8ca58f4f0e073db9f221a6e7c3d54
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Nordenström, AndreasBoulanger, NicolasIakunkov, ArtemLi, GuiTalyzin, Aleksandr V.

Search in DiVA

By author/editor
Nordenström, AndreasBoulanger, NicolasIakunkov, ArtemLi, GuiTalyzin, Aleksandr V.
By organisation
Department of Physics
In the same journal
Nanoscale Advances
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 234 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 323 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf