Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting endocrine disruption using conformal prediction: a prioritization strategy to identify hazardous chemicals with confidence
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0000-0001-6097-4657
Department of Computer and Systems Sciences, Stockholm University, Kista, Sweden; MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden; Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0000-0002-2088-6756
2023 (Engelska)Ingår i: Chemical Research in Toxicology, ISSN 0893-228X, E-ISSN 1520-5010, Vol. 36, nr 1, s. 53-65Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Receptor-mediated molecular initiating events (MIEs) and their relevance in endocrine activity (EA) have been highlighted in literature. More than 15 receptors have been associated with neurodevelopmental adversity and metabolic disruption. MIEs describe chemical interactions with defined biological outcomes, a relationship that could be described with quantitative structure-activity relationship (QSAR) models. QSAR uncertainty can be assessed using the conformal prediction (CP) framework, which provides similarity (i.e., nonconformity) scores relative to the defined classes per prediction. CP calibration can indirectly mitigate data imbalance during model development, and the nonconformity scores serve as intrinsic measures of chemical applicability domain assessment during screening. The focus of this work was to propose an in silico predictive strategy for EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23 chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and identification of compounds with potential biological activity across the studied MIEs.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2023. Vol. 36, nr 1, s. 53-65
Nationell ämneskategori
Farmakologi och toxikologi
Identifikatorer
URN: urn:nbn:se:umu:diva-202086DOI: 10.1021/acs.chemrestox.2c00267ISI: 000903383200001PubMedID: 36534483Scopus ID: 2-s2.0-85144410434OAI: oai:DiVA.org:umu-202086DiVA, id: diva2:1723399
Forskningsfinansiär
EU, Horisont 2020, 825759EU, Horisont 2020, 825489Mistra - Stiftelsen för miljöstrategisk forskning, DIA 2018/11Tillgänglig från: 2023-01-03 Skapad: 2023-01-03 Senast uppdaterad: 2023-07-13Bibliografiskt granskad

Open Access i DiVA

fulltext(5266 kB)117 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 5266 kBChecksumma SHA-512
044ca636d9656a1ae46c295f95537b7178b0dc7db268ce5f29b58f8243d344ff95c6978ab2c4d10619f638409c9a7e69032870cc2f9527657b80ac4e8977099a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Sapounidou, MariaAndersson, Patrik L.

Sök vidare i DiVA

Av författaren/redaktören
Sapounidou, MariaAndersson, Patrik L.
Av organisationen
Kemiska institutionen
I samma tidskrift
Chemical Research in Toxicology
Farmakologi och toxikologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 270 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 399 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf