Interface engineering on amorphous/crystalline hydroxides/sulfides heterostructure nanoarrays for enhanced solar water splittingVisa övriga samt affilieringar
2023 (Engelska)Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 17, nr 1, s. 636-647Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
Developing highly efficient and stable noble-metal-free electrocatalysts for water splitting is critical for producing clean and sustainable energy. Here, we design a hierarchical transition metal hydroxide/sulfide (NiFe(OH)x-Ni3S2/NF) electrode with dual heterointerface coexistence using a cation exchange-induced surface reconfiguration strategy. The electrode exhibits superior electrocatalytic activities, achieving low overpotentials of 55 mV for hydrogen evolution and 182 mV for oxygen evolution at 10 mA cm-2. Furthermore, the assembled two-electrode system requires voltages as low as 1.55 and 1.62 V to deliver industrially relevant current densities of 500 and 1000 mA cm-2, respectively, with excellent durability for over 200 h, which is comparable to commercial electrolysis. Theoretical calculations reveal that the hierarchical heterostructure increases the electronic delocalization of the Fe and Ni catalytic centers, lowering the energy barrier of the rate-limiting step and promoting O2 desorption. Finally, by implementing the catalysts in a solar-driven water electrolysis system, we demonstrate a record and durable solar-to-hydrogen (STH) conversion efficiency of up to 20.05%. This work provides a promising strategy for developing low-cost and high-efficiency bifunctional catalysts for a large-scale solar-to-hydrogen generation.
Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2023. Vol. 17, nr 1, s. 636-647
Nyckelord [en]
heterointerface, solar-to-hydrogen, transition metal hydroxide, transition metal sulfide, water splitting
Nationell ämneskategori
Fysikalisk kemi
Identifikatorer
URN: urn:nbn:se:umu:diva-202085DOI: 10.1021/acsnano.2c09880ISI: 000903287300001PubMedID: 36524746Scopus ID: 2-s2.0-85144410455OAI: oai:DiVA.org:umu-202085DiVA, id: diva2:1723406
Forskningsfinansiär
Vetenskapsrådet, 2017-04862Energimyndigheten, 45419-12023-01-032023-01-032023-07-13Bibliografiskt granskad