Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0000-0002-1898-4453
Sartorius Corporate Research, Sartorius Stedim Data Analytics AB, Umeå, Sweden.
Sartorius BioAnalytics, Essen BioScience, Ltd., Units 2 & 3 The Quadrant, Hertfordshire, Royston, United Kingdom.
Sartorius BioAnalytics, Essen BioScience, Ltd., Units 2 & 3 The Quadrant, Hertfordshire, Royston, United Kingdom.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 17, nr 5 May, artikel-id e0264241Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Fluorescence microscopy is a core method for visualizing and quantifying the spatial and temporal dynamics of complex biological processes. While many fluorescent microscopy techniques exist, due to its cost-effectiveness and accessibility, widefield fluorescent imaging remains one of the most widely used. To accomplish imaging of 3D samples, conventional widefield fluorescence imaging entails acquiring a sequence of 2D images spaced along the z-dimension, typically called a z-stack. Oftentimes, the first step in an analysis pipeline is to project that 3D volume into a single 2D image because 3D image data can be cumbersome to manage and challenging to analyze and interpret. Furthermore, z-stack acquisition is often time-consuming, which consequently may induce photodamage to the biological sample; these are major barriers for workflows that require high-throughput, such as drug screening. As an alternative to z-stacks, axial sweep acquisition schemes have been proposed to circumvent these drawbacks and offer potential of 100-fold faster image acquisition for 3D-samples compared to z-stack acquisition. Unfortunately, these acquisition techniques generate low-quality 2D z-projected images that require restoration with unwieldy, computationally heavy algorithms before the images can be interrogated. We propose a novel workflow to combine axial z-sweep acquisition with deep learning-based image restoration, ultimately enabling high-throughput and high-quality imaging of complex 3D-samples using 2D projection images. To demonstrate the capabilities of our proposed workflow, we apply it to live-cell imaging of large 3D tumor spheroid cultures and find we can produce high-fidelity images appropriate for quantitative analysis. Therefore, we conclude that combining axial z-sweep image acquisition with deep learning-based image restoration enables high-throughput and high-quality fluorescence imaging of complex 3D biological samples.

Ort, förlag, år, upplaga, sidor
Public Library of Science , 2022. Vol. 17, nr 5 May, artikel-id e0264241
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
URN: urn:nbn:se:umu:diva-203153DOI: 10.1371/journal.pone.0264241ISI: 001016382300005PubMedID: 35588399Scopus ID: 2-s2.0-85130357196OAI: oai:DiVA.org:umu-203153DiVA, id: diva2:1727440
Forskningsfinansiär
eSSENCE - An eScience CollaborationTillgänglig från: 2023-01-16 Skapad: 2023-01-16 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

fulltext(2188 kB)266 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2188 kBChecksumma SHA-512
05d80c900ee6c65a48212486ae9a099bc672e21f9c1252f6c56e751f6166aea32f51d0dac2093323701924b3920581243a52b1ec6dab9b2e0da52c7879aa2eeb
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Forsgren, Edvin

Sök vidare i DiVA

Av författaren/redaktören
Forsgren, Edvin
Av organisationen
Kemiska institutionen
I samma tidskrift
PLOS ONE
Datorgrafik och datorseende

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 278 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 383 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf