Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector”
Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, Greifswald, Germany.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, Greifswald, Germany.ORCID-id: 0000-0003-0909-670X
Fraunhofer Institute for Computer Graphics Research IGD, Rostock, Germany.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, Greifswald, Germany.ORCID-id: 0000-0002-6206-7150
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 13, nr 1, artikel-id 1399Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Plant roots influence many ecological and biogeochemical processes, such as carbon, water and nutrient cycling. Because of difficult accessibility, knowledge on plant root growth dynamics in field conditions, however, is fragmentary at best. Minirhizotrons, i.e. transparent tubes placed in the substrate into which specialized cameras or circular scanners are inserted, facilitate the capture of high-resolution images of root dynamics at the soil-tube interface with little to no disturbance after the initial installation. Their use, especially in field studies with multiple species and heterogeneous substrates, though, is limited by the amount of work that subsequent manual tracing of roots in the images requires. Furthermore, the reproducibility and objectivity of manual root detection is questionable. Here, we use a Convolutional Neural Network (CNN) for the automatic detection of roots in minirhizotron images and compare the performance of our RootDetector with human analysts with different levels of expertise. Our minirhizotron data come from various wetlands on organic soils, i.e. highly heterogeneous substrates consisting of dead plant material, often times mainly roots, in various degrees of decomposition. This may be seen as one of the most challenging soil types for root segmentation in minirhizotron images. RootDetector showed a high capability to correctly segment root pixels in minirhizotron images from field observations (F1 = 0.6044; r2 compared to a human expert = 0.99). Reproducibility among humans, however, depended strongly on expertise level, with novices showing drastic variation among individual analysts and annotating on average more than 13-times higher root length/cm2 per image compared to expert analysts. CNNs such as RootDetector provide a reliable and efficient method for the detection of roots and root length in minirhizotron images even from challenging field conditions. Analyses with RootDetector thus save resources, are reproducible and objective, and are as accurate as manual analyses performed by human experts.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2023. Vol. 13, nr 1, artikel-id 1399
Nationell ämneskategori
Ekologi
Identifikatorer
URN: urn:nbn:se:umu:diva-204518DOI: 10.1038/s41598-023-28400-xISI: 000987346600044PubMedID: 36697423Scopus ID: 2-s2.0-85146754745OAI: oai:DiVA.org:umu-204518DiVA, id: diva2:1734823
Forskningsfinansiär
Europeiska socialfonden (ESF), ESF/14-BM-A55-0013/19Europeiska socialfonden (ESF), ESF/14-BM-A55-0015/19Tillgänglig från: 2023-02-07 Skapad: 2023-02-07 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

fulltext(2186 kB)128 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2186 kBChecksumma SHA-512
46ad4ff167f7659bee54faaaf2d70b950cb2f7bf6c08acfaf0d99c85d207925526dca52607f53eb86fc0784d28e4c10e11d05b13bcb50cc919e275f83297244f
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Blume-Werry, GescheSchwieger, Sarah

Sök vidare i DiVA

Av författaren/redaktören
Blume-Werry, GescheSchwieger, Sarah
Av organisationen
Institutionen för ekologi, miljö och geovetenskap
I samma tidskrift
Scientific Reports
Ekologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 128 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 342 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf