Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Current topics and challenges in geoAI
Umeå University, Faculty of Science and Technology, Department of Computing Science.ORCID iD: 0000-0001-5629-0981
Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, The Netherlands.
2023 (English)In: Künstliche Intelligenz, ISSN 0933-1875, E-ISSN 1610-1987, Vol. 37, p. 11-16Article in journal (Refereed) Published
Abstract [en]

Taken literally, geoAI is the use of Artificial Intelligence methods and techniques in solving geo-spatial problems. Similar to AI more generally, geoAI has seen an influx of new (big) data sources and advanced machine learning techniques, but also a shift in the kind of problems under investigation. In this article, we highlight some of these changes and identify current topics and challenges in geoAI.

Place, publisher, year, edition, pages
Springer Nature, 2023. Vol. 37, p. 11-16
Keywords [en]
Social sensing, Explainable AI, Smart cities, Explicit models
National Category
Computer Sciences Human Computer Interaction Other Computer and Information Science
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:umu:diva-204685DOI: 10.1007/s13218-022-00796-0ISI: 000920810800001Scopus ID: 2-s2.0-85146884677OAI: oai:DiVA.org:umu-204685DiVA, id: diva2:1735729
Available from: 2023-02-09 Created: 2023-02-09 Last updated: 2023-07-12Bibliographically approved

Open Access in DiVA

fulltext(593 kB)276 downloads
File information
File name FULLTEXT02.pdfFile size 593 kBChecksum SHA-512
eec58a6b1e5066ad99b1c361efcbc2c81854b4dc83e7556c940d4f68e59992a6ca07285f49bd33e8e753953c6b7e477d0b4fa2a18eedd32bb9b2d4e881d8874a
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Richter, Kai-Florian

Search in DiVA

By author/editor
Richter, Kai-Florian
By organisation
Department of Computing Science
In the same journal
Künstliche Intelligenz
Computer SciencesHuman Computer InteractionOther Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 334 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 330 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf