Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
European projections of West Nile virus transmission under climate change scenarios
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa. Heidelberg institute of global health and Interdisciplinary center for scientific computing, University of Heidelberg, Im Neuenheimer Feld 205, Heidelberg, Germany.
School of Global Public Health, New York University, New York, United States.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: One Health, ISSN 2352-7714, Vol. 16, artikel-id 100509Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

West Nile virus (WNV), a mosquito-borne zoonosis, has emerged as a disease of public health concern in Europe. Recent outbreaks have been attributed to suitable climatic conditions for its vectors favoring transmission. However, to date, projections of the risk for WNV expansion under climate change scenarios is lacking. Here, we estimate the WNV-outbreaks risk for a set of climate change and socioeconomic scenarios. We delineate the potential risk-areas and estimate the growth in the population at risk (PAR). We used supervised machine learning classifier, XGBoost, to estimate the WNV-outbreak risk using an ensemble climate model and multi-scenario approach. The model was trained by collating climatic, socioeconomic, and reported WNV-infections data (2010−22) and the out-of-sample results (1950–2009, 2023–99) were validated using a novel Confidence-Based Performance Estimation (CBPE) method. Projections of area specific outbreak risk trends, and corresponding population at risk were estimated and compared across scenarios. Our results show up to 5-fold increase in West Nile virus (WNV) risk for 2040-60 in Europe, depending on geographical region and climate scenario, compared to 2000-20. The proportion of disease-reported European land areas could increase from 15% to 23-30%, putting 161 to 244 million people at risk. Across scenarios, Western Europe appears to be facing the largest increase in the outbreak risk of WNV. The increase in the risk is not linear but undergoes periods of sharp changes governed by climatic thresholds associated with ideal conditions for WNV vectors. The increased risk will require a targeted public health response to manage the expansion of WNV with climate change in Europe.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023. Vol. 16, artikel-id 100509
Nyckelord [en]
Artificial intelligence, Climate change, Climate impacts, Confidence-based performance estimation (CBPE) method, Europe, West Nile virus, WNV risk projections, XGBoost, Zoonoses
Nationell ämneskategori
Folkhälsovetenskap, global hälsa och socialmedicin
Identifikatorer
URN: urn:nbn:se:umu:diva-205369DOI: 10.1016/j.onehlt.2023.100509ISI: 001004031000001Scopus ID: 2-s2.0-85148667157OAI: oai:DiVA.org:umu-205369DiVA, id: diva2:1746661
Forskningsfinansiär
Vinnova, 2020-03367Forskningsrådet Formas, 2018-01754Europeiska kommissionen, 101057554Tillgänglig från: 2023-03-29 Skapad: 2023-03-29 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Ingår i avhandling
1. Navigating epidemics: by leveraging data science and data-driven modelling
Öppna denna publikation i ny flik eller fönster >>Navigating epidemics: by leveraging data science and data-driven modelling
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Navigera i epidemier : genom att utnyttja datavetenskap och datadriven modellering
Abstract [en]

Ours is an era of global change—including climate change, land-use change, urbanization, increased mobility of humans, species and goods, and environmental shifts. Concurrently, we are witnessing a tangible increase in the rate of (re)emerging infectious diseases, mostly driven by global change factors. This complex landscape of infectious diseases necessitates strategies underpinned by computational tools such as data-driven models to enhance our understanding, response, and predictions of potential epidemics.

In this thesis, I leveraged data science algorithms and developed data-driven models that extend beyond specific pathogens, providing insights to prepare for future epidemics, with a focus on Europe. I delved into three temporal contexts: 1) retrospective analyses to understand the contribution of global change factors—specifically climate change and human mobility—fuelling the disease outbreaks and expansion (papers I & IV), 2) develop model to improve disease severity estimation during an outbreak for immediate response (paper III), and 3) future disease transmission risk trajectories under various projected scenarios of global change (paper II)—each playing a crucial role in proactive public health planning and response.

In paper I, we assessed the predictive ability and the influence of eco-climatic factors on West Nile virus (WNV)—a pathogen with multiple hosts and mosqutio-vectors, and of public health concern in Europe. Utilizing an advanced machine learning classifier XGBoost, trained on a diverse dataset encompassing eco-climatic, sociodemographic predictors to the WNV presence/absence data, the model accurately predicted the WNV risk a season ahead. Furthermore, by employing an explainable AI algorithm, we uncovered both local and European-level drivers of WNV transmission. Higher temperatures in summer and spring, along with drier winters, were pivotal in the escalated frequency of WNV outbreaks in Europe from 2010 to 2019.

In paper II, we projected the WNV risk under climate change and socioeconomics scenarios by integrating augmenting the outputs of climate ensemble into machine learning algorithms. We projected transmission risk trends and maps at local, national, regional and European scale. We predicted a three to five fold increase in WNV transmission risk during the next few decades (2040-60) compared 2000-2020 under extreme climate change scenarios. The proportion of diseasereported European land areas could increase from 15% to 23-30%, putting 161 to 244 million people at risk. Western Europe remains at largest relative risk of WNV increase under all scenarios, and Northern Europe under extreme scenarios. With the current rate of spread and in the absence of intervention or vaccines the virus will have sustained suitability even under low carbon emission scenarios in currently endemic European regions.

In paper III, we developed a method to quantify an important epidemiological parameter-case fatality ratio (CFR)— commonly used measure to assess the disease severity during novel outbreaks. In our model, we accounted for the time lags between the reporting of a cases and that of the case fatalities and the probability distribution of time lags and derived the CFR and distribution parameters using an optimization algorithm. The method provided more accurate CFR estimations earlier than the widely used estimators under various simulation scenarios. The method also performed well on empirical COVID-19 data from 34 countries.  

In paper IV, we modelled annual dengue importations in Europe and the United States driven by human mobility and climate. Travel rates were modelled using a radiation model based on population density, geographic distance, and travel volumes. Dengue viraemic travellers were computed considering local mosquito bite risk, travel-associated bite probability, and visit duration. A dynamic vector life-stage model quantified the climatic suitability of transmissionpermissive local areas. Dengue importations linearly increased in Europe and the U.S. from 2015-2019, rising by 588% and 390%, respectively, compared to 1996-2000 estimates, driven by increased travel volumes (373%) and dengue incidence rates (30%) from endemic countries. Transmission seasons lengthened by 53% and 15% in Europe and the U.S., respectively, indicating increasingly permissive climates for local outbreaks. These findings apply to other diseases such as chikungunya, Zika, and yellow fever, sharing common intermediate host vectors, namely Aedes mosquitoes.

This thesis highlights Europe's increasing vulnerability to infectious diseases due to global change factors, putting millions at risk. It emphasizes the significance of advanced modelling and innovative data streams in anticipating epidemic risks. Developing digital early warning systems to track disease drivers and taking urgent climate change mitigation and adaptation measures are crucial to anticipate and reduce future epidemic risks. The outcomes of this research can be used to develop technology-driven decision support tools to aid public health authorities and policymakers in making evidence-based decisions during and inter-epidemic periods. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2024. s. 47
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2305
Nyckelord
Epidemics, Data science, West Nile virus, Europe, case fatality ratio, human mobility, AI, XAI, SHAP, data-driven modelling, climate change, dengue, data-driven model, CFR, adaptation
Nationell ämneskategori
Folkhälsovetenskap, global hälsa och socialmedicin
Forskningsämne
epidemiologi; folkhälsa; infektionssjukdomar
Identifikatorer
urn:nbn:se:umu:diva-223582 (URN)978-91-8070-385-7 (ISBN)978-91-8070-386-4 (ISBN)
Disputation
2024-06-03, Sal B, Våning 9, Norrlands universitetssjukhus, Umeå, 09:00 (Engelska)
Opponent
Handledare
Anmärkning

För att delta digitalt via zoom: https://umu.zoom.us/j/62878331943

Passcode: 112233

Tillgänglig från: 2024-05-13 Skapad: 2024-05-02 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

fulltext(3969 kB)607 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3969 kBChecksumma SHA-512
7435aea0bc1af85c3ef0aa4ea07308a96781bd65a80d7d8130ac1811cc1632da38da68a1d0f5cf1022c0b52e98d515f1916a129f7fa737970ff3601732d9f353
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Farooq, ZiaSjödin, HenrikSemenza, Jan C.Sewe, Maquins OdhiamboRocklöv, Joacim

Sök vidare i DiVA

Av författaren/redaktören
Farooq, ZiaSjödin, HenrikSemenza, Jan C.Sewe, Maquins OdhiamboRocklöv, Joacim
Av organisationen
Avdelningen för hållbar hälsa
I samma tidskrift
One Health
Folkhälsovetenskap, global hälsa och socialmedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 607 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1074 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf