Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The tenth visual object tracking VOT2022 challenge results
University of Ljubljana, Ljubljana, Slovenia.
University of Birmingham, Birmingham, United Kingdom.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0001-8503-0118
Zhejiang University, Hangzhou, China.
Antal upphovsmän: 1562023 (Engelska)Ingår i: Computer vision – ECCV 2022 workshops: Tel Aviv, Israel, October 23–27, 2022, proceedings, part VIII / [ed] Leonid Karlinsky; Tomer Michaeli; Ko Nishino, Cham: Springer, 2023, s. 431-460Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The Visual Object Tracking challenge VOT2022 is the tenth annual tracker benchmarking activity organized by the VOT initiative. Results of 93 entries are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in recent years. The VOT2022 challenge was composed of seven sub-challenges focusing on different tracking domains: (i) VOT-STs2022 challenge focused on short-term tracking in RGB by segmentation, (ii) VOT-STb2022 challenge focused on short-term tracking in RGB by bounding boxes, (iii) VOT-RTs2022 challenge focused on “real-time” short-term tracking in RGB by segmentation, (iv) VOT-RTb2022 challenge focused on “real-time” short-term tracking in RGB by bounding boxes, (v) VOT-LT2022 focused on long-term tracking, namely coping with target disappearance and reappearance, (vi) VOT-RGBD2022 challenge focused on short-term tracking in RGB and depth imagery, and (vii) VOT-D2022 challenge focused on short-term tracking in depth-only imagery. New datasets were introduced in VOT-LT2022 and VOT-RGBD2022, VOT-ST2022 dataset was refreshed, and a training dataset was introduced for VOT-LT2022. The source code for most of the trackers, the datasets, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2023. s. 431-460
Serie
Lecture Notes in Computer Science (LNCS), ISSN 0302-9743, E-ISSN 1611-3349 ; 13808
Nyckelord [en]
Visual Object Tracking challenge, VOT, Short-term tracking, Long-term tracking, Performance evaluation
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:umu:diva-206728DOI: 10.1007/978-3-031-25085-9_25Scopus ID: 2-s2.0-85151355577ISBN: 978-3-031-25084-2 (tryckt)ISBN: 978-3-031-25085-9 (digital)OAI: oai:DiVA.org:umu-206728DiVA, id: diva2:1750791
Konferens
17th European Conference on Computer Vision, ECCV 2022, Tel Aviv, October 23-27, 2022.
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP)Knut och Alice Wallenbergs StiftelseEU, Horisont 2020, 899987Tillgänglig från: 2023-04-14 Skapad: 2023-04-14 Senast uppdaterad: 2023-04-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Björklund, Johanna

Sök vidare i DiVA

Av författaren/redaktören
Björklund, Johanna
Av organisationen
Institutionen för datavetenskap
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 213 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf