Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting the dengue cluster outbreak dynamics in Yogyakarta, Indonesia: a modelling study
Umeå universitet, Medicinska fakulteten, Institutionen för epidemiologi och global hälsa. Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa. Department of Health Behavior, Environment and Social Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.ORCID-id: 0000-0003-0968-988X
School of Global Public Health, New York University, New York, United States.
Department of Statistics, Lund University, Lund, Sweden.
Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: The Lancet Regional Health - Southeast Asia, E-ISSN 2772-3682, Vol. 15, artikel-id 100209Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Human mobility and climate conditions are recognised key drivers of dengue transmission, but their combined and individual role in the local spatiotemporal clustering of dengue cases is not well understood. This study investigated the effects of human mobility and weather conditions on dengue risk in an urban area in Yogyakarta, Indonesia.

Methods: We established a Bayesian spatiotemporal model for neighbourhood outbreak prediction and evaluated the performances of two different approaches for constructing an adjacency matrix: one based on geographical proximity and the other based on human mobility patterns. We used population, weather conditions, and past dengue cases as predictors using a flexible distributed lag approach. The human mobility data were estimated based on proxies from social media. Unseen data from February 2017 to January 2020 were used to estimate the one-month ahead prediction accuracy of the model.

Findings: When human mobility proxies were included in the spatial covariance structure, the model fit improved in terms of the log score (from 1.748 to 1.561) and the mean absolute error (from 0.676 to 0.522) based on the validation data. Additionally, showed only few observations outside the credible interval of predictions (1.48%) and weather conditions were not found to contribute additionally to the clustering of cases at this scale.

Interpretation: The study shows that it is possible to make highly accurate predictions of the within-city cluster dynamics of dengue using mobility proxies from social media combined with disease surveillance data. These insights are important for proactive and timely outbreak management of dengue.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023. Vol. 15, artikel-id 100209
Nyckelord [en]
Arbovirus, Big data, Climate services, Climate Variability, Dengue, DLNM, Early warning, Epidemic, Forecasting model, INLA, Population mobility, Rainfall, Social media, Spatiotemporal model, Temperature, Twitter, Weather
Nationell ämneskategori
Folkhälsovetenskap, global hälsa och socialmedicin
Identifikatorer
URN: urn:nbn:se:umu:diva-209124DOI: 10.1016/j.lansea.2023.100209ISI: 001119175900001PubMedID: 37614350Scopus ID: 2-s2.0-85159184754OAI: oai:DiVA.org:umu-209124DiVA, id: diva2:1763627
Forskningsfinansiär
Forskningsrådet FormasForte, Forskningsrådet för hälsa, arbetsliv och välfärdVinnovaTillgänglig från: 2023-06-07 Skapad: 2023-06-07 Senast uppdaterad: 2025-04-24Bibliografiskt granskad

Open Access i DiVA

fulltext(729 kB)74 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 729 kBChecksumma SHA-512
34ed927451c845e9c2dc22d5b00ae0619eb7193b548a2576443b7166f8be6de632e34a0e59af4df7bb06d6d5482b526cb767077203b469759029d6d3efe4ec99
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Ramadona, Aditya LiaRocklöv, Joacim

Sök vidare i DiVA

Av författaren/redaktören
Ramadona, Aditya LiaRocklöv, Joacim
Av organisationen
Institutionen för epidemiologi och global hälsaAvdelningen för hållbar hälsa
I samma tidskrift
The Lancet Regional Health - Southeast Asia
Folkhälsovetenskap, global hälsa och socialmedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 95 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 332 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf