Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
General framework for deriving reproducible krylov subspace algorithms: BiCGStab case
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Sorbonne Université, CNRS, LIP6, Paris, France.
Sorbonne Université, CNRS, LIP6, Paris, France.
Universitat Jaume I, Castellón de la Plana, Spain.
2023 (Engelska)Ingår i: Parallel processing and applied mathematics: 14th International Conference, PPAM 2022, Gdansk, Poland, September 11–14, 2022, Revised Selected Papers, Part I / [ed] Roman Wyrzykowski; Jack Dongarra; Ewa Deelman; Konrad Karczewski, Springer Science+Business Media B.V., 2023, s. 16-29Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Parallel implementations of Krylov subspace algorithms often help to accelerate the procedure to find the solution of a linear system. However, from the other side, such parallelization coupled with asynchronous and out-of-order execution often enlarge the non-associativity of floating-point operations. This results in non-reproducibility on the same or different settings. This paper proposes a general framework for deriving reproducible and accurate variants of a Krylov subspace algorithm. The proposed algorithmic strategies are reinforced by programmability suggestions to assure deterministic and accurate executions. The framework is illustrated on the preconditioned BiCGStab method for the solution of non-symmetric linear systems with message-passing. Finally, we verify the two reproducible variants of PBiCGStab on a set matrices from the SuiteSparse Matrix Collection and a 3D Poisson’s equation.

Ort, förlag, år, upplaga, sidor
Springer Science+Business Media B.V., 2023. s. 16-29
Serie
Lecture Notes in Computer Science, ISSN 03029743, E-ISSN 16113349 ; 13826
Nyckelord [en]
accuracy, floating-point expansion, fused multiply-add, long accumulator, preconditioned BiCGStab, Reproducibility
Nationell ämneskategori
Beräkningsmatematik Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-210209DOI: 10.1007/978-3-031-30442-2_2Scopus ID: 2-s2.0-85161362443ISBN: 9783031304415 (tryckt)ISBN: 978-3-031-30442-2 (digital)OAI: oai:DiVA.org:umu-210209DiVA, id: diva2:1776897
Konferens
14th International Conference on Parallel Processing and Applied Mathematics, PPAM 2022, September 11-14, 2022.
Tillgänglig från: 2023-06-28 Skapad: 2023-06-28 Senast uppdaterad: 2023-06-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Iakymchuk, Roman

Sök vidare i DiVA

Av författaren/redaktören
Iakymchuk, Roman
Av organisationen
Institutionen för datavetenskap
BeräkningsmatematikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 134 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf