Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bootstrap percolation in random geometric graphs
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0001-8631-4745
Western Washington University, United States.
2023 (Engelska)Ingår i: Advances in Applied Probability, ISSN 0001-8678, E-ISSN 1475-6064, Vol. 55, nr 4, s. 1254-1300Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Following Bradonji´c and Saniee, we study a model of bootstrap percolation on the Gilbert random geometric graph on the 2-dimensional torus. In this model, the expected number of vertices of the graph is n, and the expected degree of a vertex is a log n for some fixed a>1. Each vertex is added with probability p to a set A0 of initially infected vertices. Vertices subsequently become infected if they have at least θa log n infected neighbours. Here p, θ ∈ [0, 1] are taken to be fixed constants.

We show that if θ <(1+p)/2, then a sufficiently large local outbreak leads with high probability to the infection spreading globally, with all but o(n) vertices eventually becoming infected. On the other hand, for θ >(1+p)/2, even if one adversarially infects every vertex inside a ball of radius O(√log n), with high probability the infection will spread to only o(n) vertices beyond those that were initially infected.

In addition we give some bounds on the (a, p, θ) regions ensuring the emergence of large local outbreaks or the existence of islands of vertices that never become infected. We also give a complete picture of the (surprisingly complex) behaviour of the analogous 1-dimensional bootstrap percolation model on the circle. Finally we raise a number of problems, and in particular make a conjecture on an ‘almost no percolation or almost full percolation’ dichotomy which may be of independent interest.

Ort, förlag, år, upplaga, sidor
Cambridge University Press, 2023. Vol. 55, nr 4, s. 1254-1300
Nyckelord [en]
bootstrap percolation, random geometric graphs, random processes
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-211166DOI: 10.1017/apr.2023.5ISI: 001168005000008Scopus ID: 2-s2.0-85162047124OAI: oai:DiVA.org:umu-211166DiVA, id: diva2:1779435
Forskningsfinansiär
Vetenskapsrådet, 2016-03488Vetenskapsrådet, 2021-03687Stiftelsen för internationalisering av högre utbildning och forskning (STINT), IB 2017-7360Tillgänglig från: 2023-07-04 Skapad: 2023-07-04 Senast uppdaterad: 2025-04-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Falgas-Ravry, Victor

Sök vidare i DiVA

Av författaren/redaktören
Falgas-Ravry, Victor
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Advances in Applied Probability
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 189 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf