Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Artificial intelligence in rehabilitation targeting the participation of children and youth with disabilities: Scoping review
Show others and affiliations
2021 (English)In: Journal of Medical Internet Research, E-ISSN 1438-8871, Vol. 23, no 11, article id e25745Article, review/survey (Refereed) Published
Abstract [en]

Background: In the last decade, there has been a rapid increase in research on the use of artificial intelligence (AI) to improve child and youth participation in daily life activities, which is a key rehabilitation outcome. However, existing reviews place variable focus on participation, are narrow in scope, and are restricted to select diagnoses, hindering interpretability regarding the existing scope of AI applications that target the participation of children and youth in a pediatric rehabilitation setting.

Objective: The aim of this scoping review is to examine how AI is integrated into pediatric rehabilitation interventions targeting the participation of children and youth with disabilities or other diagnosed health conditions in valued activities.

Methods: We conducted a comprehensive literature search using established Applied Health Sciences and Computer Science databases. Two independent researchers screened and selected the studies based on a systematic procedure. Inclusion criteria were as follows: participation was an explicit study aim or outcome or the targeted focus of the AI application; AI was applied as part of the provided and tested intervention; children or youth with a disability or other diagnosed health conditions were the focus of either the study or AI application or both; and the study was published in English. Data were mapped according to the types of AI, the mode of delivery, the type of personalization, and whether the intervention addressed individual goal-setting.

Results: The literature search identified 3029 documents, of which 94 met the inclusion criteria. Most of the included studies used multiple applications of AI with the highest prevalence of robotics (72/94, 77%) and human-machine interaction (51/94, 54%). Regarding mode of delivery, most of the included studies described an intervention delivered in-person (84/94, 89%), and only 11% (10/94) were delivered remotely. Most interventions were tailored to groups of individuals (93/94, 99%). Only 1% (1/94) of interventions was tailored to patients’ individually reported participation needs, and only one intervention (1/94, 1%) described individual goal-setting as part of their therapy process or intervention planning.

Conclusions: There is an increasing amount of research on interventions using AI to target the participation of children and youth with disabilities or other diagnosed health conditions, supporting the potential of using AI in pediatric rehabilitation. On the basis of our results, 3 major gaps for further research and development were identified: a lack of remotely delivered participation-focused interventions using AI; a lack of individual goal-setting integrated in interventions; and a lack of interventions tailored to individually reported participation needs of children, youth, or families.

Place, publisher, year, edition, pages
JMIR Publications, 2021. Vol. 23, no 11, article id e25745
Keywords [en]
health care, pediatric rehabilitation, technology, young persons, robotics, human-machine interaction, personalization, customization, goal-setting, natural language processing, machine learning
National Category
Occupational Therapy Computer Sciences Physiotherapy Other Health Sciences
Identifiers
URN: urn:nbn:se:umu:diva-212585DOI: 10.2196/25745ISI: 000726107800004PubMedID: 34734833Scopus ID: 2-s2.0-85118992377OAI: oai:DiVA.org:umu-212585DiVA, id: diva2:1785917
Available from: 2023-08-07 Created: 2023-08-07 Last updated: 2024-01-17Bibliographically approved

Open Access in DiVA

fulltext(620 kB)79 downloads
File information
File name FULLTEXT01.pdfFile size 620 kBChecksum SHA-512
e20f82ac347a95b7ea0a448817d4003afb23e18a5f03afeb27ea11f13b440c4c6904d42667dce539dbd64c34405826464fc67ad26e25a024e8fb90c47012f4c6
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Kaelin, Vera C.

Search in DiVA

By author/editor
Kaelin, Vera C.
In the same journal
Journal of Medical Internet Research
Occupational TherapyComputer SciencesPhysiotherapyOther Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 82 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 219 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf