In this paper we study a variation of the random κ-SAT problem, called polarised random κ-SAT, which contains both the classical random κ-SAT model and the random version of monotone κ-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter p, and in half of the clauses each variable occurs negated with probability p and pure otherwise, while in the other half the probabilities are interchanged. For p = 1/2 we get the classical random κ-SAT model, and at the other extreme we have the fully polarised model where p = 0, or 1. Here there are only two types of clauses: clauses where all κ variables occur pure, and clauses where all κ variables occur negated. That is, for p = 0, and p=1, we get an instance of random monotone κ-SAT. We show that the threshold of satisfiability does not decrease as p moves away from 1/2 and thus that the satisfiability threshold for polarised random κ-SAT with p ≠ 1/2 is an upper bound on the threshold for random κ-SAT. Hence the satisfiability threshold for random monotone κ-SAT is at least as large as for random κ-SAT, and we conjecture that asymptotically, for a fixed κ, the two thresholds coincide.