Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine learning classification of psychiatric data associated with compensation claims for patient injuries
Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland.
Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland.
Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Patient Insurance Centre, Helsinki, Finland.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Methods of Information in Medicine, ISSN 0026-1270, Vol. 62, nr 05/06, s. 174-182Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Adverse events are common in health care. In psychiatric treatment, compensation claims for patient injuries appear to be less common than in other medical specialties. The most common types of patient injury claims in psychiatry include diagnostic flaws, unprevented suicide, or coercive treatment deemed as unnecessary or harmful.

Objectives: The objective was to study whether it is possible to form different categories of patient injury types associated with the psychiatric evaluations of compensation claims and to base machine learning classification on these categories. Further, the binary classification of positive and negative decisions for compensation claims was the other objective.

Methods: Finnish psychiatric specialist evaluations for the compensation claims of patient injuries were classified into six different categories called classes applying the machine learning methods of artificial intelligence. In addition, another classification of the same data into two classes was performed to test whether it was possible to classify data cases according to their known decisions, either accepted or declined compensation claim.

Results: The former classification task produced relatively good classification results subject to separating between different classes. Instead, the latter was more complex. However, classification accuracies of both tasks could be improved by using the generation of artificial data cases in the preprocessing phase before classifications. This preprocessing improved the classification accuracy of six classes up to 88% when the method of random forests was used for classification and that of the binary classification to 89%. Conclusion The results show that the objectives defined were possible to solve reasonably.

Ort, förlag, år, upplaga, sidor
Georg Thieme Verlag KG, 2023. Vol. 62, nr 05/06, s. 174-182
Nyckelord [en]
classification, machine learning, patient injury, psychiatry
Nationell ämneskategori
Psykiatri
Identifikatorer
URN: urn:nbn:se:umu:diva-213062DOI: 10.1055/s-0043-1771378ISI: 001035393700001PubMedID: 37487538Scopus ID: 2-s2.0-85167738933OAI: oai:DiVA.org:umu-213062DiVA, id: diva2:1790924
Tillgänglig från: 2023-08-24 Skapad: 2023-08-24 Senast uppdaterad: 2024-05-07Bibliografiskt granskad

Open Access i DiVA

fulltext(507 kB)187 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 507 kBChecksumma SHA-512
623c01a67c5d549c9f25a34c760a81dc6d3954f3cb04554e775040c16babf641b52d5ca152073c58bba9b6cad0a0c981139b67af930c1b67c76cb07f2855a29b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Kampman, Olli

Sök vidare i DiVA

Av författaren/redaktören
Kampman, Olli
Av organisationen
Psykiatri
I samma tidskrift
Methods of Information in Medicine
Psykiatri

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 219 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 376 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf