Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical study of nonlinear Schrödinger equations with white noise dispersion
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0002-9117-0544
Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.ORCID-id: 0000-0001-6490-1957
Inria Lille Nord-Europe and Laboratoire Paul Painlevé UMR CNRS 8524, Villeneuve d’Asq Cedex, France.ORCID-id: 0000-0002-9085-1946
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:umu:diva-213770OAI: oai:DiVA.org:umu-213770DiVA, id: diva2:1792263
Tillgänglig från: 2023-08-29 Skapad: 2023-08-29 Senast uppdaterad: 2023-08-29
Ingår i avhandling
1. Numerical analysis and simulation of stochastic partial differential equations with white noise dispersion
Öppna denna publikation i ny flik eller fönster >>Numerical analysis and simulation of stochastic partial differential equations with white noise dispersion
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Numerisk analys och simulering av stokastiska partiella differentialekvationer med dispersion av vitt brus
Abstract [en]

This doctoral thesis provides a comprehensive numerical analysis and exploration of several stochastic partial differential equations (SPDEs). More specifically, this thesis investigates time integrators for SPDEs with white noise dispersion. 

The thesis begins by examining the stochastic nonlinear Schrödinger equation with white noise dispersion (SNLSE), see Paper 1. The investigation probes the performance of different numerical integrators for this equation, focusing on their convergences, L2-norm preservation, and computational efficiency. Further, this thesis thoroughly investigates a conjecture on the critical exponent of the SNLSE, related to a phenomenon known as blowup, through numerical means. 

The thesis then introduces and studies exponential integrators for the stochastic Manakov equation (SME) by presenting two new time integrators - the explicit and symmetric exponential integrators - and analyzing their convergence properties, see Paper 2. Notably, this study highlights the flexibility and efficiency of these integrators compared to traditional schemes. The narrative then turns to the Lie-Trotter splitting integrator for the SME, see Paper 3, comparing its performance to existing time integrators. Theoretical proofs for convergence in various senses, alongside extensive numerical experiments, shed light on the efficacy of the proposed numerical scheme. The thesis also deep dives into the critical exponents of the SME, proposing a conjecture regarding blowup conditions for this SPDE.

Lastly, the focus shifts to the stochastic generalized Benjamin-Bona-Mahony equation, see Paper 4. The study introduces and numerically assesses four novel exponential integrators for this equation. A primary finding here is the superior performance of the symmetric exponential integrator. This thesis also offers a succinct and novel method to depict the order of convergence in probability.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 60
Serie
Research report in mathematics, ISSN 1653-0810 ; 75/23
Nyckelord
stochastic partial differential equation, mathematics, numerical analysis, numerical scheme, time integrator, convergence analysis, blowup, critical exponent, nonlinear Schrödinger equation, Manakov equation, Benjamin-Bona-Mahony equation, BBM equation, stochastic, random, dispersion, white noise dispersion, finite difference, pseudospectral, code, matlab, exponential integrator, splitting integrator, convergence in probability
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
matematik; numerisk analys
Identifikatorer
urn:nbn:se:umu:diva-213773 (URN)9789180701419 (ISBN)9789180701402 (ISBN)
Disputation
2023-09-25, Hörsal MIT.A.121, Umeå, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-09-04 Skapad: 2023-08-29 Senast uppdaterad: 2023-08-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Berg, André

Sök vidare i DiVA

Av författaren/redaktören
Berg, AndréCohen, DavidDujardin, Guillaume
Av organisationen
Institutionen för matematik och matematisk statistik
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 78 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf