Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Denoising and uncertainty estimation in parameter mapping with approximate Bayesian deep image priors
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper.ORCID-id: 0000-0002-0200-6567
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0001-7119-7646
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper.ORCID-id: 0000-0002-0532-232X
2023 (Engelska)Ingår i: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 90, nr 6, s. 2557-2571Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Purpose: To mitigate the problem of noisy parameter maps with high uncertainties by casting parameter mapping as a denoising task based on Deep Image Priors.

Methods: We extend the concept of denoising with Deep Image Prior (DIP) into parameter mapping by treating the output of an image-generating network as a parametrization of tissue parameter maps. The method implicitly denoises the parameter mapping process by filtering low-level image features with an untrained convolutional neural network (CNN). Our implementation includes uncertainty estimation from Bernoulli approximate variational inference, implemented with MC dropout, which provides model uncertainty in each voxel of the denoised parameter maps. The method is modular, so the specifics of different applications (e.g., T1 mapping) separate into application-specific signal equation blocks. We evaluate the method on variable flip angle T1 mapping, multi-echo T2 mapping, and apparent diffusion coefficient mapping.

Results: We found that deep image prior adapts successfully to several applications in parameter mapping. In all evaluations, the method produces noise-reduced parameter maps with decreased uncertainty compared to conventional methods. The downsides of the proposed method are the long computational time and the introduction of some bias from the denoising prior.

Conclusion: DIP successfully denoise the parameter mapping process and applies to several applications with limited hyperparameter tuning. Further, it is easy to implement since DIP methods do not use network training data. Although time-consuming, uncertainty information from MC dropout makes the method more robust and provides useful information when properly calibrated.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2023. Vol. 90, nr 6, s. 2557-2571
Nyckelord [en]
deep image prior, denoising, parameter mapping, quantitative MRI, uncertainty estimation
Nationell ämneskategori
Medicinsk bildvetenskap Datorgrafik och datorseende
Identifikatorer
URN: urn:nbn:se:umu:diva-213711DOI: 10.1002/mrm.29823ISI: 001049833500001PubMedID: 37582257Scopus ID: 2-s2.0-85168117341OAI: oai:DiVA.org:umu-213711DiVA, id: diva2:1797466
Forskningsfinansiär
Vetenskapsrådet, 2019‐0432Region Västerbotten, RV‐970119Cancerforskningsfonden i Norrland, AMP 18‐912Tillgänglig från: 2023-09-14 Skapad: 2023-09-14 Senast uppdaterad: 2025-09-09Bibliografiskt granskad
Ingår i avhandling
1. Noise reduction and uncertainty estimation in quantitative magnetic resonance imaging
Öppna denna publikation i ny flik eller fönster >>Noise reduction and uncertainty estimation in quantitative magnetic resonance imaging
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Brusreducering och osäkerhetsuppskattning i kvantitativ magnetresonanstomografi
Abstract [en]

Quantitative magnetic resonance imaging (qMRI) is a subset of MRI that moves beyond qualitative image interpretation towards more objective and reproducible quantification of tissue parameters, a process referred to as parameter mapping. In cancer imaging, this capability has the potential to assist with characterizing tumors, monitoring treatment response, and comparing scans both over time and across different scanners or imaging sites. This thesis addresses the problem of uncertainty in parameter mapping. This is done by developing methods that both reduce uncertainty and estimate the uncertainty that remains, two important components for advancing the clinical reliability of qMRI. The first component, reducing uncertainty, focuses on reducing noise in the parameter maps. In this thesis, we propose methods that apply denoising priors to stabilize the parameter mapping process. The second component, estimating the remaining uncertainty, aims to quantify what uncertainty remains after denoising has been applied. This is achieved through uncertainty estimation, providing a more complete picture of the results.

Paper I presents a method for T1 mapping that combines an explicit denoising prior, in the form of total variation (TV) regularization, together with uncertainty estimation using Markov chain Monte Carlo (MCMC) sampling. The strength of the TV prior is selected in a data-driven way which reduces the requirement of manual tuning. This approach produces denoised parameter maps with reduced uncertainty and meaningful uncertainty estimates. Remaining challenges include the computational burden and the need to carefully manage prior-induced biases.

Paper II introduces an alternative to the method in Paper I. Instead of using an explicit prior, it exploits Deep Image Prior (DIP), which utilizes the structure of an untrained convolutional neural network to impose an implicit prior. This is implemented with Monte Carlo dropout, a simple approach to approximate Bayesian inference for uncertainty estimation. The method is easy to implement and denoises the tissue parameters T1, T2, and ADC. However, the results reveal that uncertainty calibration becomes more challenging, and the computation time remains too long for practical clinical use.

Paper III improves the DIP method from Paper II by addressing long computation times and difficulties in uncertainty calibration. To reduce computation times, we introduce warm-start initialization, which leverages information from both neighboring image slices and different subjects to accelerate parameter mapping. To improve calibration, we systematically tune MC dropout to reduce miscalibration. In addition, a data-driven early stopping criterion is proposed to automatically set the denoising level, removing the need for manual tuning. Together, these changes make the DIP method faster, better calibrated, and more clinically usable.

Paper IV investigates further improvements of the DIP method towards more advanced qMRI models, specifically evaluated with Patlak-based estimation of pharmacokinetic parameters in DCE-MRI. This study evaluates the feasibility of this approach by comparing parameter maps with and without the DIP method applied. Preliminary results show substantial noise reduction and improved feature representation. Remaining challenges include prior-induced biases that require further refinement.

In summary, this thesis addresses uncertainty in qMRI by focusing on two key components: reducing uncertainty through denoising and estimating the remaining uncertainty. These aspects are investigated using two fundamentally different strategies: one based on explicit denoising with robust Bayesian inference using MCMC (Paper I), and one based on implicit denoising combined with approximate Bayesian inference (Papers II-IV). The four included studies develop and refine these strategies to overcome practical limitations and enhance applicability. By evaluating their respective strengths and weaknesses, the work provides insight into how methodological choices affect accuracy, uncertainty, and computational feasibility. These contributions aim to support the development of qMRI as a more trustworthy and reproducible tool in cancer imaging and beyond.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2025. s. 78
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2376
Nyckelord
Quantitative MRI, Denoising, Uncertainty estimation, Markov chain Monte Carlo, Deep Image Prior
Nationell ämneskategori
Radiologi och bildbehandling
Forskningsämne
radiofysik
Identifikatorer
urn:nbn:se:umu:diva-244020 (URN)978-91-8070-760-2 (ISBN)978-91-8070-759-6 (ISBN)
Disputation
2025-10-03, Triple Helix, Universitetsledningshuset (plan 3), Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-09-12 Skapad: 2025-09-09 Senast uppdaterad: 2025-09-11Bibliografiskt granskad

Open Access i DiVA

fulltext(7926 kB)171 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 7926 kBChecksumma SHA-512
6a664aa5b6aaa1420d6e185bc0dea47dd7ce8918e56549c3a182e4e34a86f23ec816dc428c1f4ee0d6a61804a7935f94f9b70c1f1c030c967f5641493d745ea7
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Hellström, MaxLöfstedt, TommyGarpebring, Anders

Sök vidare i DiVA

Av författaren/redaktören
Hellström, MaxLöfstedt, TommyGarpebring, Anders
Av organisationen
Institutionen för strålningsvetenskaperInstitutionen för datavetenskap
I samma tidskrift
Magnetic Resonance in Medicine
Medicinsk bildvetenskapDatorgrafik och datorseende

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 208 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 584 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf