Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MadFed: enhancing federated learning with marginal-data model fusion
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-2514-3043
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-2633-6798
2023 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 11, s. 102669-102680Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

As the demand for intelligent applications at the network edge grows, so does the need for effective federated learning (FL) techniques. However, FL often relies on non-identically and non-independently distributed local datasets across end devices, which could result in considerable performance degradation. Prior solutions, such as model-driven approaches based on knowledge distillation, meta-learning, and transfer learning, have provided some reprieve. However, their performance suffers under heterogeneous local datasets and highly skewed data distributions. To address these challenges, this study introduces the MArginal Data fusion FEDerated Learning (MadFed) approach, a groundbreaking fusion of model- and data-driven methodologies. By utilizing marginal data, MadFed mitigates data distribution skewness, improves the maximum achievable accuracy, and reduces communication costs. Furthermore, the study demonstrates that the fusion of marginal data can significantly improve performance even with minimal data entries, such as a single entry. For instance, it provides up to a 15.4% accuracy increase and 70.4% communication cost savings when combined with established model-driven methodologies. Conversely, relying solely on these model-driven methodologies can result in poor performance, especially with highly skewed datasets. Significantly, MadFed extends its effectiveness across various FL algorithms and offers a unique method to augment label sets of end devices, thereby enhancing the utility and applicability of federated learning in real-world scenarios. The proposed approach is not only efficient but also adaptable and versatile, promising broader application and potential for widespread adoption in the field.

Ort, förlag, år, upplaga, sidor
IEEE, 2023. Vol. 11, s. 102669-102680
Nyckelord [en]
Computational modeling, Costs, Data integration, Data models, Edge computing, Edge Computing, Federated learning, Federated learning, Performance evaluation, Performance evaluation, Training
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-214778DOI: 10.1109/ACCESS.2023.3315654ISI: 001076820700001Scopus ID: 2-s2.0-85171574845OAI: oai:DiVA.org:umu-214778DiVA, id: diva2:1801568
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP)Swedish National Infrastructure for Computing (SNIC)Knut och Alice Wallenbergs StiftelseTillgänglig från: 2023-10-02 Skapad: 2023-10-02 Senast uppdaterad: 2025-04-24Bibliografiskt granskad

Open Access i DiVA

fulltext(1632 kB)165 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1632 kBChecksumma SHA-512
55b7c480ebfdbbdbe9dc9f9bfc6cf86199b98f7aab8dc2f862e929991e0051758bfb7d33f0e7a61575710a5edad5f4667352f0e88f163bf79f111992fe146542
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Seo, EunilElmroth, Erik

Sök vidare i DiVA

Av författaren/redaktören
Seo, EunilElmroth, Erik
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
IEEE Access
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 165 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 561 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf