Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Indirect observations of electric fields at comet 67P
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0003-0587-9598
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0002-7787-2160
Swedish Institute of Space Physics, Kiruna, Sweden.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0001-5379-1158
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 128, nr 9, artikel-id e2023JA031746Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

No spacecraft visiting a comet has been equipped with instruments to directly measure the static electric field. However, the electric field can occasionally be estimated indirectly by observing its effects on the ion velocity distribution. We present such observations made by the Rosetta spacecraft on 19 April 2016, 35 km from the nucleus. At this time comet 67P was at a low outgassing rate and the plasma environment was relatively stable. The ion velocity distributions show the cometary ions on the first half of their gyration. We estimate the bulk drift velocity and the gyration speed from the distributions. By using the local measured magnetic field and assuming an E × B drift of the gyrocentre, we get an estimate for the average electric field driving this ion motion. We analyze a period of 13 hr, during which the plasma environment does not change drastically. We find that the average strength of the perpendicular electric field component is 0.21 mV/m. The direction of the electric field is mostly anti-sunward. This is in agreement with previous results based on different methods.

Ort, förlag, år, upplaga, sidor
American Geophysical Union (AGU), 2023. Vol. 128, nr 9, artikel-id e2023JA031746
Nationell ämneskategori
Fusion, plasma och rymdfysik Astronomi, astrofysik och kosmologi
Identifikatorer
URN: urn:nbn:se:umu:diva-214755DOI: 10.1029/2023JA031746Scopus ID: 2-s2.0-85171655091OAI: oai:DiVA.org:umu-214755DiVA, id: diva2:1801897
Forskningsfinansiär
Rymdstyrelsen, 132/19Rymdstyrelsen, 108/18Tillgänglig från: 2023-10-03 Skapad: 2023-10-03 Senast uppdaterad: 2024-10-17Bibliografiskt granskad
Ingår i avhandling
1. Physics at sub-ion-gyroradius scales near low-activity comets
Öppna denna publikation i ny flik eller fönster >>Physics at sub-ion-gyroradius scales near low-activity comets
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Fysiken på skalor mindre än jongyroradien vid lågaktiva kometer
Abstract [en]

The morphology of induced comet magnetospheres varies greatly over a comet's orbit. Far away from the Sun, the cometary activity, quantified by the outgassing rate, is very low and the cometary ion density is smaller than the solar wind ion density. In this case the interaction between the cometary plasma and the solar wind is characterised by a simple deflection of the solar wind as it gets mass-loaded by the cometary plasma. In contrast, near perihelion the cometary activity and outgassing rate increase by several orders of magnitude. A fully developed bow shock forms as part of the interaction between the cometary plasma and the solar wind, and extends tens of thousands to millions of km from the comet nucleus into the upstream solar wind. At low-to-intermediate cometary activity the spatial scales of the induced comet magnetosphere are similar to the gyroradii of the ions and no fully developed bow shock is formed. The comet–solar wind interaction in this transition period is strongly influenced by kinetic effects acting on both cometary and solar wind ions. The physical processes in the plasma environment near such low- activity comets are the subject of this thesis. Its main focus is on the shape, origin, and evolution of the ion velocity distributions (VDFs), as well as the energy transfer between the solar wind and the cometary magnetosphere. Furthermore, a combined approach utilising both in-situ measurements as well as numerical modelling provides a complete 3D picture of the interaction. We use observations from the Rosetta mission and 3D global kinetic hybrid modelling to study the interaction. 

The European Space Agency mission Rosetta to comet 67P/Churyumov-Gerasimenko was equipped with a broad spectrum of scientific payloads, including two ion spectrometers: the Ion Composition Analyzer (ICA), and the Ion and Electron Spectrometer (IES) as part of the Rosetta Plasma Consortium (RPC). On 19 April 2016, at a heliocentric distance of 2.8 au, ICA and IES detected partial ring-like VDFs of solar wind protons along with approximately isotropic distributions of the solar wind alpha particles. These observations stand in contrast to the expected and previously observed Maxwellian distributions of deflected solar wind ions usually associated with low cometary activity. The fitted velocity components of the partial rings show a significant deceleration of the proton bulk velocity, potentially connected to the initial stages of bow shock formation. The lack of partial ring formation for alpha particles is attributed to their larger gyroradii compared to protons. The observed cometary pickup ions during this time period also show the initial stages of partial ring formation. The fitted velocities in the case of the cometary ions are much lower compared to those of the solar wind ions, which suggests a strong shielding of the inner coma from the undisturbed solar wind electric field. 

The formation of non-Maxwellian ion VDFs as a result of comet–solar wind interaction is subsequently studied using the kinetic hybrid model code Amitis. Partial ring distributions are found to form in large parts of the comet magnetosphere, including close to the nucleus where they have been observed by Rosetta. The shapes of solar wind proton VDFs continuously evolve as the solar wind traverses the cometary plasma environment and are non-Maxwellian throughout most of the magnetosphere. As a result of the solar wind interaction with the cometary ions, the plasma forms a magnetic pile-up layer in the -E-hemisphere, the hemisphere which the solar wind is deflected towards. In this magnetic pile-up layer the magnetic field strength is stronger compared to the interplanetary magnetic field, and the solar wind proton density is increased. Upstream of and in the magnetic pile-up layer, secondary populations of protons resemble reflected ions found at planetary bow shocks. The solar wind alpha particles show a different spatial evolution of their VDFs due to the larger gyroradii. Additional simulations show that the composition of the solar wind affects the size and shape of the induced comet magnetosphere. The large inertia of alpha particles makes them less efficient in transferring energy to the cometary ions and electromagnetic fields upstream of the nucleus. Therefore, a larger proportion of alpha particles at a given solar wind dynamic pressure and cometary activity leads to a relatively larger mass loading of the solar wind protons. This in turn results in an expansion of the magnetic pile-up layer, along with a decrease in magnetic field strength. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2024. s. 63
Serie
IRF Scientific Report, ISSN 0284-1703 ; 317
Nyckelord
Comets, solar wind, plasma physics, space plasmas
Nationell ämneskategori
Fusion, plasma och rymdfysik
Forskningsämne
rymdfysik; rymd- och plasmafysik
Identifikatorer
urn:nbn:se:umu:diva-230927 (URN)978-91-8070-511-0 (ISBN)978-91-8070-512-7 (ISBN)
Disputation
2024-11-15, Ljusårssalen, Institutet för rymdfysik, Bengt Hultqvists väg 1, Kiruna, 09:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Rymdstyrelsen, 132/19
Tillgänglig från: 2024-10-25 Skapad: 2024-10-17 Senast uppdaterad: 2024-10-21Bibliografiskt granskad

Open Access i DiVA

fulltext(1067 kB)87 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1067 kBChecksumma SHA-512
299bda264c1a7890606716f1307e53a1be74f22cc3ab5ec9161a6371105c77620b1d0108db23117d2f0719ed428dc0d60a4067e6abfb7cff830f7206e85ad046
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Moeslinger, AnjaNilsson, HansGunell, Herbert

Sök vidare i DiVA

Av författaren/redaktören
Moeslinger, AnjaNilsson, HansGunell, Herbert
Av organisationen
Institutionen för fysik
I samma tidskrift
Journal of Geophysical Research - Space Physics
Fusion, plasma och rymdfysikAstronomi, astrofysik och kosmologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 87 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 191 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf