Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An ontology-based framework for geospatial integration and querying of raster data cube using virtual knowledge graphs
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Department of Information Science and Media Studies, University of Bergen, Bergen, Norway; Department of Informatics, University of Oslo, Olso, Norway; Ontopic S.r.l, Bolzano, Italy.
Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Ontopic S.r.l, Bolzano, Italy; KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Bolzano, Italy.ORCID-id: 0000-0001-5174-9693
2023 (Engelska)Ingår i: ISPRS International Journal of Geo-Information, ISSN 2220-9964, Vol. 12, nr 9, artikel-id 375Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The integration of the raster data cube alongside another form of geospatial data (e.g., vector data) raises considerable challenges when it comes to managing and representing it using knowledge graphs. Such integration can play an invaluable role in handling the heterogeneity of geospatial data and linking the raster data cube to semantic technology standards. Many recent approaches have been attempted to address this issue, but they often lack robust formal elaboration or solely concentrate on integrating raster data cubes without considering the inclusion of semantic spatial entities along with their spatial relationships. This may constitute a major shortcoming when it comes to performing advanced geospatial queries and semantically enriching geospatial models. In this paper, we propose a framework that can enable such semantic integration and advanced querying of raster data cubes based on the virtual knowledge graph (VKG) paradigm. This framework defines a semantic representation model for raster data cubes that extends the GeoSPARQL ontology. With such a model, we can combine the semantics of raster data cubes with features-based models that involve geometries as well as spatial and topological relationships. This could allow us to formulate spatiotemporal queries using SPARQL in a natural way by using ontological concepts at an appropriate level of abstraction. We propose an implementation of the proposed framework based on a VKG system architecture. In addition, we perform an experimental evaluation to compare our framework with other existing systems in terms of performance and scalability. Finally, we show the potential and the limitations of our implementation and we discuss several possible future works.

Ort, förlag, år, upplaga, sidor
MDPI, 2023. Vol. 12, nr 9, artikel-id 375
Nyckelord [en]
geospatial data integration, knowledge querying, ontology, raster data cube, SPARQL, virtual knowledge graphs
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-214987DOI: 10.3390/ijgi12090375ISI: 001081011800001Scopus ID: 2-s2.0-85172200413OAI: oai:DiVA.org:umu-214987DiVA, id: diva2:1804601
Forskningsfinansiär
KempestiftelsernaTillgänglig från: 2023-10-13 Skapad: 2023-10-13 Senast uppdaterad: 2025-04-24Bibliografiskt granskad

Open Access i DiVA

fulltext(32076 kB)186 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 32076 kBChecksumma SHA-512
35fa351c7816d6899ba42a1e50a7e13834ff14314d47d3c0a05d3728c7625656cc28be340250080817b90b4f96c369a8893e716e6064f284b8f6cde52a823953
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Hamdani, YounesCalvanese, Diego

Sök vidare i DiVA

Av författaren/redaktören
Hamdani, YounesCalvanese, Diego
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
ISPRS International Journal of Geo-Information
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 186 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 316 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf