Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Missing Data in Prediction Research: A Five-Step Approach for Multiple Imputation, Illustrated in the CENTER-TBI Study
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 38, nr 13, s. 1842-1857Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In medical research, missing data is common. In acute diseases, such as traumatic brain injury (TBI), even well-conducted prospective studies may suffer from missing data in baseline characteristics and outcomes. Statistical models may simply drop patients with any missing values, potentially leaving a selected subset of the original cohort. Imputation is widely accepted by methodologists as an appropriate way to deal with missing data. We aim to provide practical guidance on handling missing data for prediction modeling. We hereto propose a five-step approach, centered around single and multiple imputation: 1) explore the missing data patterns; 2) choose a method of imputation; 3) perform imputation; 4) assess diagnostics of the imputation; and 5) analyze the imputed data sets. We illustrate these five steps with the estimation and validation of the IMPACT (International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury) prognostic model in 1375 patients from the CENTER-TBI database, included in 53 centers across 17 countries, with moderate or severe TBI in the prospective European CENTER-TBI study. Future prediction modeling studies in acute diseases may benefit from following the suggested five steps for optimal statistical analysis and interpretation, after maximal effort has been made to minimize missing data.

Ort, förlag, år, upplaga, sidor
Mary Ann Liebert, 2021. Vol. 38, nr 13, s. 1842-1857
Nyckelord [en]
imputation, missing data, prediction, traumatic brain injury, tutorial
Nationell ämneskategori
Anestesi och intensivvård
Identifikatorer
URN: urn:nbn:se:umu:diva-215788DOI: 10.1089/neu.2020.7218ISI: 000624609300001PubMedID: 33470157Scopus ID: 2-s2.0-85108371807OAI: oai:DiVA.org:umu-215788DiVA, id: diva2:1807437
Tillgänglig från: 2023-10-26 Skapad: 2023-10-26 Senast uppdaterad: 2023-10-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Brorsson, CamillaKoskinen, Lars-Owe D.Sundström, Nina

Sök vidare i DiVA

Av författaren/redaktören
Brorsson, CamillaBrorsson, CamillaKoskinen, Lars-Owe D.Sundström, Nina
Av organisationen
Anestesiologi och intensivvårdInstitutionen för klinisk vetenskapInstitutionen för strålningsvetenskaper
I samma tidskrift
Journal of Neurotrauma
Anestesi och intensivvård

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 116 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf