Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An intelligent telemonitoring application for coronavirus patients: reCOVeryaID
Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy.
Pineta Grande Hospital, Caserta, Italy.
University Riuniti Hospital, Ancona, Italy.
Kronosan Srl, Montevergine Hospital, Mercogliano, Italy.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Frontiers in Big Data, E-ISSN 2624-909X, Vol. 6, artikel-id 1205766Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The COVID-19 emergency underscored the importance of resolving crucial issues of territorial health monitoring, such as overloaded phone lines, doctors exposed to infection, chronically ill patients unable to access hospitals, etc. In fact, it often happened that people would call doctors/hospitals just out of anxiety, not realizing that they were clogging up communications, thus causing problems for those who needed them most; such people, often elderly, have often felt lonely and abandoned by the health care system because of poor telemedicine. In addition, doctors were unable to follow up on the most serious cases or make sure that others did not worsen. Thus, uring the first pandemic wave we had the idea to design a system that could help people alleviate their fears and be constantly monitored by doctors both in hospitals and at home; consequently, we developed reCOVeryaID, a telemonitoring application for coronavirus patients. It is an autonomous application supported by a knowledge base that can react promptly and inform medical doctors if dangerous trends in the patient's short- and long-term vital signs are detected. In this paper, we also validate the knowledge-base rules in real-world settings by testing them on data from real patients infected with COVID-19.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2023. Vol. 6, artikel-id 1205766
Nyckelord [en]
artificial intelligence, coronavirus, COVID-19, eHealth, long-term monitoring, rule-based system, telehealth, telemedicine
Nationell ämneskategori
Datavetenskap (datalogi) Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi
Identifikatorer
URN: urn:nbn:se:umu:diva-215751DOI: 10.3389/fdata.2023.1205766ISI: 001074266300001PubMedID: 37790086Scopus ID: 2-s2.0-85173935827OAI: oai:DiVA.org:umu-215751DiVA, id: diva2:1809219
Tillgänglig från: 2023-11-02 Skapad: 2023-11-02 Senast uppdaterad: 2023-11-02Bibliografiskt granskad

Open Access i DiVA

fulltext(1827 kB)53 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1827 kBChecksumma SHA-512
2652af535ace95cc2bc3effa0a0db67090dec87ae2218cae9c6980418d246e4e6ea3ed601e306cbed4c4fbb7c497a6e22b54b6ce0fd5b40c5545cb12af6c2fa9
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Calvanese, Diego

Sök vidare i DiVA

Av författaren/redaktören
Calvanese, Diego
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 53 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 242 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf