Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Limits of latin squares
Institute of Mathematics, Czech Academy of Sciences, Czech Republic.
Institut für Informatik, Heidelberg University, Heidelberg, Germany.
Institute of Mathematics, Czech Academy of Sciences, Czech Republic.
University of Warwick, Coventry, UK. (Discrete Mathematics)
2023 (English)In: Discrete Analysis, E-ISSN 2397-3129, Vol. 2023, article id 8Article in journal (Refereed) Published
Abstract [en]

We develop a limit theory of Latin squares, paralleling the recent limit theories ofdense graphs and permutations. We introduce a notion of density, an appropriate version ofthe cut distance, and a space of limit objects — so-called Latinons. Key results of our theoryare the compactness of the limit space and the equivalence of the topologies induced by thecut distance and the left-convergence. Last, using Keevash’s recent results on combinatorialdesigns, we prove that each Latinon can be approximated by a finite Latin square.

Place, publisher, year, edition, pages
Alliance of Diamond Open Access Journals , 2023. Vol. 2023, article id 8
National Category
Discrete Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-217362DOI: 10.19086/da.83253ISI: 001038207600001Scopus ID: 2-s2.0-85171631393OAI: oai:DiVA.org:umu-217362DiVA, id: diva2:1815950
Funder
EU, Horizon 2020, 648509EU, Horizon 2020, 752426
Note

Overlay journal.

Available from: 2023-11-30 Created: 2023-11-30 Last updated: 2025-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusFull text (ArXiv)Publisher's full text

Authority records

Sharifzadeh, Maryam

Search in DiVA

By author/editor
Sharifzadeh, Maryam
In the same journal
Discrete Analysis
Discrete Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 195 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf