Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CT-based automatic spine segmentation using patch-based deep learning
Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China; AI Research Center for Medical Image Analysis and Diagnosis, College of Computer Science and Software Engineering, Shenzhen University, Guangdong, Shenzhen, China.
Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
AI Research Center for Medical Image Analysis and Diagnosis, College of Computer Science and Software Engineering, Shenzhen University, Guangdong, Shenzhen, China.
Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Tobe Camp, Abbottabad, Pakistan.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: International Journal of Intelligent Systems, ISSN 0884-8173, E-ISSN 1098-111X, Vol. 2023, artikel-id 2345835Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

CT vertebral segmentation plays an essential role in various clinical applications, such as computer-assisted surgical interventions, assessment of spinal abnormalities, and vertebral compression fractures. Automatic CT vertebral segmentation is challenging due to the overlapping shadows of thoracoabdominal structures such as the lungs, bony structures such as the ribs, and other issues such as ambiguous object borders, complicated spine architecture, patient variability, and fluctuations in image contrast. Deep learning is an emerging technique for disease diagnosis in the medical field. This study proposes a patch-based deep learning approach to extract the discriminative features from unlabeled data using a stacked sparse autoencoder (SSAE). 2D slices from a CT volume are divided into overlapping patches fed into the model for training. A random under sampling (RUS)-module is applied to balance the training data by selecting a subset of the majority class. SSAE uses pixel intensities alone to learn high-level features to recognize distinctive features from image patches. Each image is subjected to a sliding window operation to express image patches using autoencoder high-level features, which are then fed into a sigmoid layer to classify whether each patch is a vertebra or not. We validate our approach on three diverse publicly available datasets: VerSe, CSI-Seg, and the Lumbar CT dataset. Our proposed method outperformed other models after configuration optimization by achieving 89.9% in precision, 90.2% in recall, 98.9% in accuracy, 90.4% in F-score, 82.6% in intersection over union (IoU), and 90.2% in Dice coefficient (DC). The results of this study demonstrate that our model's performance consistency using a variety of validation strategies is flexible, fast, and generalizable, making it suited for clinical application.

Ort, förlag, år, upplaga, sidor
Hindawi Publishing Corporation, 2023. Vol. 2023, artikel-id 2345835
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-216893DOI: 10.1155/2023/2345835Scopus ID: 2-s2.0-85156094943OAI: oai:DiVA.org:umu-216893DiVA, id: diva2:1818133
Tillgänglig från: 2023-12-08 Skapad: 2023-12-08 Senast uppdaterad: 2023-12-08Bibliografiskt granskad

Open Access i DiVA

fulltext(3983 kB)37 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3983 kBChecksumma SHA-512
5230f3943ce73be268a3420d38f9c2a5f3ac7cbbf0bffcb5070e131ed0919dc8050acd9f9d794f797152ccdd58b0cc6e3b607567ad528911c510c1f012427cb6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Qamar, Saqib

Sök vidare i DiVA

Av författaren/redaktören
Qamar, Saqib
Av organisationen
Institutionen för fysik
I samma tidskrift
International Journal of Intelligent Systems
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 37 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 199 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf