Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Co-design of a trustworthy AI system in healthcare: deep learning based skin lesion classifier
Frankfurt Big Data Lab, Goethe University Frankfurt, Frankfurt, Germany; Department of Business Management and Analytics, Arcada University of Applied Sciences, Helsinki, Finland; Data Science Graduate School, Seoul National University, Seoul, South Korea.
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.
Health Ethics and Policy Lab, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
Department of Dermatology, University Clinic Münster, Münster, Germany; Department of Dermatology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Frontiers in Human Dynamics, E-ISSN 2673-2726 , Vol. 3, artikel-id 688152Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper documents how an ethically aligned co-design methodology ensures trustworthiness in the early design phase of an artificial intelligence (AI) system component for healthcare. The system explains decisions made by deep learning networks analyzing images of skin lesions. The co-design of trustworthy AI developed here used a holistic approach rather than a static ethical checklist and required a multidisciplinary team of experts working with the AI designers and their managers. Ethical, legal, and technical issues potentially arising from the future use of the AI system were investigated. This paper is a first report on co-designing in the early design phase. Our results can also serve as guidance for other early-phase AI-similar tool developments.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2021. Vol. 3, artikel-id 688152
Nyckelord [en]
artificial intelligence, ethical co-design, ethics, healthcare, malignant melanoma, trustworthy AI, trustworthy AI Co-design, Z-inspection®1
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:umu:diva-217550DOI: 10.3389/fhumd.2021.688152ISI: 001097602600001Scopus ID: 2-s2.0-85121899656OAI: oai:DiVA.org:umu-217550DiVA, id: diva2:1818584
Forskningsfinansiär
EU, Horisont 2020, 101016233Deutsche Forschungsgemeinschaft (DFG), EXC 2064/1Tillgänglig från: 2023-12-11 Skapad: 2023-12-11 Senast uppdaterad: 2023-12-11Bibliografiskt granskad

Open Access i DiVA

fulltext(1098 kB)61 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1098 kBChecksumma SHA-512
0cd27006058e1befe75ad939b3ba0a3f00ebd79ad58c6581aa35365f8164615b0f8ca1a43fac4e01f85d120691a91849c62e5ef187d651c67c34b31bed477444
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Campano, Erik

Sök vidare i DiVA

Av författaren/redaktören
Campano, Erik
Av organisationen
Institutionen för informatik
I samma tidskrift
Frontiers in Human Dynamics
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 62 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 357 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf