Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On assessing trustworthy AI in healthcare: Machine learning as a supportive tool to recognize cardiac arrest in emergency calls
Artificial Intelligence, Arcada University of Applied Sciences, Helsinki, Finland; Data Science Graduate School, Seoul National University, Seoul, South Korea.
Philosophy Department, Pace University, NY, New York, United States.
University of Copenhagen, Copenhagen Emergency Medical Services, Copenhagen, Denmark.
University of Copenhagen, Copenhagen Emergency Medical Services, Copenhagen, Denmark.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Frontiers in Human Dynamics, E-ISSN 2673-2726 , Vol. 3, artikel-id 673104Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Artificial Intelligence (AI) has the potential to greatly improve the delivery of healthcare and other services that advance population health and wellbeing. However, the use of AI in healthcare also brings potential risks that may cause unintended harm. To guide future developments in AI, the High-Level Expert Group on AI set up by the European Commission (EC), recently published ethics guidelines for what it terms “trustworthy” AI. These guidelines are aimed at a variety of stakeholders, especially guiding practitioners toward more ethical and more robust applications of AI. In line with efforts of the EC, AI ethics scholarship focuses increasingly on converting abstract principles into actionable recommendations. However, the interpretation, relevance, and implementation of trustworthy AI depend on the domain and the context in which the AI system is used. The main contribution of this paper is to demonstrate how to use the general AI HLEG trustworthy AI guidelines in practice in the healthcare domain. To this end, we present a best practice of assessing the use of machine learning as a supportive tool to recognize cardiac arrest in emergency calls. The AI system under assessment is currently in use in the city of Copenhagen in Denmark. The assessment is accomplished by an independent team composed of philosophers, policy makers, social scientists, technical, legal, and medical experts. By leveraging an interdisciplinary team, we aim to expose the complex trade-offs and the necessity for such thorough human review when tackling socio-technical applications of AI in healthcare. For the assessment, we use a process to assess trustworthy AI, called 1Z-Inspection® to identify specific challenges and potential ethical trade-offs when we consider AI in practice.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2021. Vol. 3, artikel-id 673104
Nyckelord [en]
artificial intelligence, cardiac arrest, case study, ethical trade-off, explainable AI, healthcare, trust, trustworthy AI
Nationell ämneskategori
Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-217548DOI: 10.3389/fhumd.2021.673104ISI: 001094060300001Scopus ID: 2-s2.0-85177815584OAI: oai:DiVA.org:umu-217548DiVA, id: diva2:1819211
Forskningsfinansiär
Novo Nordisk fonden, NNF17SA0027784EU, Horisont 2020, 777107Deutsche Forschungsgemeinschaft (DFG), EXC 2064/ 1Tillgänglig från: 2023-12-13 Skapad: 2023-12-13 Senast uppdaterad: 2023-12-19Bibliografiskt granskad

Open Access i DiVA

fulltext(1484 kB)40 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1484 kBChecksumma SHA-512
f811183e9e8c3bb4f1107d5764c85669fa53560becc96cedd5c7b1a1db2dba5dbf615f0516683ccebe12c94d23f0701d4443f937a857863fd1606aa973376ea6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Campano, Erik

Sök vidare i DiVA

Av författaren/redaktören
Campano, Erik
Av organisationen
Institutionen för informatik
I samma tidskrift
Frontiers in Human Dynamics
Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomiDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 40 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 210 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf