Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Few-shot anomaly detection in text with deviation learning
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Department of Computer Science Engineering, Indian Institute of Technology Patna, Patna, India.
Department of Computer Science Engineering, Indian Institute of Technology Patna, Patna, India.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-9842-7840
2024 (Engelska)Ingår i: Neural Information Processing. ICONIP 2023 / [ed] Luo, B.; Cheng, L.; Wu, ZG., Li, H.; Li, C., Singapore: Springer, 2024, s. 425-438Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Most current methods for detecting anomalies in text concentrate on constructing models solely relying on unlabeled data. These models operate on the presumption that no labeled anomalous examples are available, which prevents them from utilizing prior knowledge of anomalies that are typically present in small numbers in many real-world applications. Furthermore, these models prioritize learning feature embeddings rather than optimizing anomaly scores directly, which could lead to suboptimal anomaly scoring and inefficient use of data during the learning process. In this paper, we introduce FATE, a deep few-shot learning-based framework that leverages limited anomaly examples and learns anomaly scores explicitly in an end-to-end method using deviation learning. In this approach, the anomaly scores of normal examples are adjusted to closely resemble reference scores obtained from a prior distribution. Conversely, anomaly samples are forced to have anomalous scores that considerably deviate from the reference score in the upper tail of the prior. Additionally, our model is optimized to learn the distinct behavior of anomalies by utilizing a multi-head self-attention layer and multiple instance learning approaches. Comprehensive experiments on several benchmark datasets demonstrate that our proposed approach attains a new level of state-of-the-art performance (Our code is available at https://github.com/arav1ndajay/fate/ ).

Ort, förlag, år, upplaga, sidor
Singapore: Springer, 2024. s. 425-438
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 14448
Nyckelord [en]
Anomaly detection, Deviation learning, Few-shot learning, Natural language processing, Text anomaly
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-218126DOI: 10.1007/978-981-99-8082-6_33ISI: 001148054200032Scopus ID: 2-s2.0-85178580714ISBN: 9789819980819 (tryckt)ISBN: 9789819980826 (digital)OAI: oai:DiVA.org:umu-218126DiVA, id: diva2:1820451
Konferens
30th International Conference on Neural Information Processing, ICONIP 2023, Changsha, China, November 20–23, 2023
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseTillgänglig från: 2023-12-18 Skapad: 2023-12-18 Senast uppdaterad: 2025-04-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Das, Anindya SundarBhuyan, Monowar H.

Sök vidare i DiVA

Av författaren/redaktören
Das, Anindya SundarBhuyan, Monowar H.
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 194 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf