Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A cross-validation-based statistical theory for point processes
Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.ORCID-id: 0000-0002-6721-8608
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0003-3905-4498
Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark.
2024 (Engelska)Ingår i: Biometrika, ISSN 0006-3444, E-ISSN 1464-3510, Vol. 111, nr 2, s. 625-641Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motivated by the general ability of cross-validation to reduce overfitting and mean square error, we develop a cross-validation-based statistical theory for general point processes. It is based on the combination of two novel concepts for general point processes: cross-validation and prediction errors. Our cross-validation approach uses thinning to split a point process/pattern into pairs of training and validation sets, while our prediction errors measure discrepancy between two point processes. The new statistical approach, which may be used to model different distributional characteristics, exploits the prediction errors to measure how well a given model predicts validation sets using associated training sets. Having indicated that our new framework generalizes many existing statistical approaches, we then establish different theoretical properties for it, including large sample properties. We further recognize that nonparametric intensity estimation is an instance of Papangelou conditional intensity estimation, which we exploit to apply our new statistical theory to kernel intensity estimation. Using independent thinning-based cross-validation, we numerically show that the new approach substantially outperforms the state-of-the-art in bandwidth selection. Finally, we carry out intensity estimation for a dataset in forestry and a dataset in neurology.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2024. Vol. 111, nr 2, s. 625-641
Nyckelord [en]
Kernel intensity estimation, Papangelou conditional intensity, Prediction, Spatial statistics, Thinning
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-218935DOI: 10.1093/biomet/asad041ISI: 001076837500001Scopus ID: 2-s2.0-85193377698OAI: oai:DiVA.org:umu-218935DiVA, id: diva2:1823812
Anmärkning

First published online: 27 June 2023

Errata: Correction to: 'A cross-validation-based statistical theory for point processes', Biometrika, Volume 111, Issue 1, March 2024, Page 365, https://doi.org/10.1093/biomet/asad077

Tillgänglig från: 2024-01-03 Skapad: 2024-01-03 Senast uppdaterad: 2024-06-10Bibliografiskt granskad

Open Access i DiVA

fulltext(667 kB)137 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 667 kBChecksumma SHA-512
e27cd1ecd8c5d8d81d2f56e75b88f76f68a9ae98016c309cbb666d3b66d71b08972ddf368b7d1d0a3d7fded45fe6facbae8bd712c770a03bf24e2d8570180b1d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Moradi, Mehdi

Sök vidare i DiVA

Av författaren/redaktören
Cronie, OttmarMoradi, Mehdi
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Biometrika
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 216 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 648 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf