Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
When is a planar rod configuration infinitesimally rigid?
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0002-5040-2089
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0002-7040-4006
2025 (Engelska)Ingår i: Discrete & Computational Geometry, ISSN 0179-5376, E-ISSN 1432-0444, Vol. 73, nr 1, s. 25-48Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We investigate the rigidity properties of rod configurations. Rod configurations are realizations of rank two incidence geometries as points (joints) and straight lines (rods) in the Euclidean plane, such that the lines move as rigid bodies, connected at the points. Note that not all incidence geometries have such realizations. We show that under the assumptions that the rod configuration exists and is sufficiently generic, its infinitesimal rigidity is equivalent to the infinitesimal rigidity of generic frameworks of the graph defined by replacing each rod by a cone over its point set. To put this into context, the molecular conjecture states that the infinitesimal rigidity of rod configurations realizing 2-regular hypergraphs is determined by the rigidity of generic body and hinge frameworks realizing the same hypergraph. This conjecture was proven by Jackson and Jordán in the plane, and by Katoh and Tanigawa in arbitrary dimension. Whiteley proved a version of the molecular conjecture for hypergraphs of arbitrary degree that have realizations as independent body and joint frameworks. Our result extends his result to hypergraphs that do not necessarily have realizations as independent body and joint frameworks, under the assumptions listed above.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2025. Vol. 73, nr 1, s. 25-48
Nyckelord [en]
Combinatorial rigidity, Hypergraphs, Incidence geometries, Parallel redrawings, Rod configurations
Nationell ämneskategori
Diskret matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-218895DOI: 10.1007/s00454-023-00617-7ISI: 001126462800001Scopus ID: 2-s2.0-85180169240OAI: oai:DiVA.org:umu-218895DiVA, id: diva2:1824064
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 2020.0001Knut och Alice Wallenbergs Stiftelse, 2020.0007Tillgänglig från: 2024-01-04 Skapad: 2024-01-04 Senast uppdaterad: 2025-04-28Bibliografiskt granskad
Ingår i avhandling
1. Does it move?: euclidean and projective rigidity of hypergraphs
Öppna denna publikation i ny flik eller fönster >>Does it move?: euclidean and projective rigidity of hypergraphs
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Rör den sig? : euklidisk och projektiv stelhet av hypergrafer
Abstract [en]

Rigidity theory is the mathematical study of rigidity and flexibility of discrete structures. Rigidity theory, and the related field of kinematics, have a wide range of applications to fields such as material science, robotics, architecture, and computer aided design.

In rigidity theory, rigidity and flexibility are often studied as properties of an underlying combinatorial object. In this thesis, the aim is to study rigidity theoretic problems where the underlying combinatorial object is an incidence geometry. Firstly, we study rigidity problems for realisations of incidence geometries of rank 2 as points and straight lines in the plane. Finding realisations of incidence geometries as points and straight lines in the plane is an interesting problem in its own right that can be formulated as a problem of realisability of rank 3 matroids over the real numbers.

We study motions of rod configurations, which are realisations of incidence geometries as points and straight line segments in the plane, where each line segment is treated as a rigid rod. Specifically, motions of a rod configuration preserve the distance between any two points on a rod. We introduce and investigate a new notion of minimal rigidity for rod configurations. We also prove that rigidity of a rod configuration is equivalent to rigidity of a graph, under certain geometric conditions on the rod configuration. We also find realisations of v3-configurations that are flexible as rod configurations for ν ≥ 28. We show that all regularrealisations of v3-configurations for v ≤ 15, and triangle-free v3-configurations for v ≤ 20 are rigid as rod configurations.

We also consider motions of realisations of incidence geometries as points and straight lines in the plane which preserve only incidences between points and lines. We introduce the notion of projective motions, which are motions of realisations of incidence geometries as points and straight lines in the projective plane which preserve incidences. Furthermore, we introduce the basic tools for investigating rigidity with respectto projective motions. We also investigate the relationship between projective rigidity and higher-order projective rigidity.

Finally, we introduce a sparsity condition on graded posets, and introduce an algorithm which can determine whether a given graded poset satisfies the sparsity condition. We also show that sparsity conditions define a greedoid.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2025. s. 28
Serie
Research report in mathematics, ISSN 1653-0810 ; 79/25
Nyckelord
Rigidity, configurations, matroids, projective geometry
Nationell ämneskategori
Diskret matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:umu:diva-238259 (URN)978-91-8070-700-8 (ISBN)978-91-8070-701-5 (ISBN)
Disputation
2025-05-27, UB.A.220, Samhällsvetarhuset, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-05-06 Skapad: 2025-04-28 Senast uppdaterad: 2025-04-30Bibliografiskt granskad

Open Access i DiVA

fulltext(496 kB)43 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 496 kBChecksumma SHA-512
23dea0829db8fa75815224929677cdbc73009b273a0d9b36b7b3131c37b95a85719768768dc9591d01a02b8214d25f446d74d2ca2691b212d5df1e0efb1181c8
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Lundqvist, SigneStokes, KlaraÖhman, Lars-Daniel

Sök vidare i DiVA

Av författaren/redaktören
Lundqvist, SigneStokes, KlaraÖhman, Lars-Daniel
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Discrete & Computational Geometry
Diskret matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 125 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 428 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf