Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Genomic basis of seed colour in quinoa inferred from variant patterns using extreme gradient boosting
Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).ORCID-id: 0000-0001-6031-005X
Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Plant Biotechnology Journal, ISSN 1467-7644, E-ISSN 1467-7652, Vol. 22, nr 5, s. 1312-1324Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Quinoa is an agriculturally important crop species originally domesticated in the Andes of central South America. One of its most important phenotypic traits is seed colour. Seed colour variation is determined by contrasting abundance of betalains, a class of strong antioxidant and free radicals scavenging colour pigments only found in plants of the order Caryophyllales. However, the genetic basis for these pigments in seeds remains to be identified. Here we demonstrate the application of machine learning (extreme gradient boosting) to identify genetic variants predictive of seed colour. We show that extreme gradient boosting outperforms the classical genome-wide association approach. We provide re-sequencing and phenotypic data for 156 South American quinoa accessions and identify candidate genes potentially controlling betalain content in quinoa seeds. Genes identified include novel cytochrome P450 genes and known members of the betalain synthesis pathway, as well as genes annotated as being involved in seed development. Our work showcases the power of modern machine learning methods to extract biologically meaningful information from large sequencing data sets.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2024. Vol. 22, nr 5, s. 1312-1324
Nyckelord [en]
betalain synthesis pathway, genome sequencing, genotype-phenotype relationships, machine learning, quinoa, seed colour
Nationell ämneskategori
Botanik
Identifikatorer
URN: urn:nbn:se:umu:diva-219822DOI: 10.1111/pbi.14267ISI: 001140794900001PubMedID: 38213076Scopus ID: 2-s2.0-85182144182OAI: oai:DiVA.org:umu-219822DiVA, id: diva2:1830167
Tillgänglig från: 2024-01-22 Skapad: 2024-01-22 Senast uppdaterad: 2024-07-02Bibliografiskt granskad

Open Access i DiVA

fulltext(1225 kB)103 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1225 kBChecksumma SHA-512
7367cfc5e81a08d373c59f124d39064c43c87a7b881165210170533378e341fa8d6b6dda1cd7f079019bec3ff593b2834880973ea81cc90f0d02546269ef5622
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Street, Nathaniel

Sök vidare i DiVA

Av författaren/redaktören
Street, Nathaniel
Av organisationen
Institutionen för fysiologisk botanikUmeå Plant Science Centre (UPSC)
I samma tidskrift
Plant Biotechnology Journal
Botanik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 151 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 345 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf