Umeå universitets logga

umu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robust (rainbow) subdivisions and simplicial cycles
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0001-8344-3592
2024 (Engelska)Ingår i: Advances in Combinatorics, E-ISSN 2517-5599, Vol. 2024Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present several results in extremal graph and hypergraph theory of topological nature. First, we show that if α > 0 and ℓ = Ω(1αlog 1α) is an odd integer, then every graph G with n vertices and at least n1+α edges contains an ℓ-subdivision of the complete graph Kt, where t = nΘ(α). Also, this remains true if in addition the edges of G are properly colored, and one wants to find a rainbow copy of such a subdivision. In the sparser regime, we show that properly edge colored graphs on n vertices with average degree (logn)2+o(1) contain rainbow cycles, while average degree (logn)6+o(1) guarantees rainbow subdivisions of Kt for any fixed t, thus improving recent results of Janzer and Jiang et al., respectively. Furthermore, we consider certain topological notions of cycles in pure simplicial complexes (uniform hypergraphs). We show that if G is a 2-dimensional pure simplicial complex (3-graph) with n 1-dimensional and at least n1+α 2-dimensional faces, then G contains a triangulation of the cylinder and the Möbius strip with O(1αlog 1α) vertices. We present generalizations of this for higher dimensional pure simplicial complexes as well. In order to prove these results, we consider certain (properly edge colored) graphs and hypergraphs G with strong expansion. We argue that if one randomly samples the vertices (and colors) of G with not too small probability, then many pairs of vertices are connected by a short path whose vertices (and colors) are from the sampled set, with high probability.

Ort, förlag, år, upplaga, sidor
Alliance of Diamond Open Access Journals , 2024. Vol. 2024
Nyckelord [en]
rainbow, simplicial complex, subdivision, Turán problem
Nationell ämneskategori
Diskret matematik Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-220322DOI: 10.19086/aic.2024.1Scopus ID: 2-s2.0-85183041111OAI: oai:DiVA.org:umu-220322DiVA, id: diva2:1837177
Anmärkning

Overlay journal.

Tillgänglig från: 2024-02-13 Skapad: 2024-02-13 Senast uppdaterad: 2024-02-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Tomon, István

Sök vidare i DiVA

Av författaren/redaktören
Tomon, István
Av organisationen
Institutionen för matematik och matematisk statistik
Diskret matematikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 108 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf