Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0000-0001-8089-2333
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0009-0004-3292-1637
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 67, nr 3, s. 2202-2219Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2024. Vol. 67, nr 3, s. 2202-2219
Nationell ämneskategori
Läkemedelskemi
Identifikatorer
URN: urn:nbn:se:umu:diva-220319DOI: 10.1021/acs.jmedchem.3c02127ISI: 001160609500001PubMedID: 38241609Scopus ID: 2-s2.0-85183093324OAI: oai:DiVA.org:umu-220319DiVA, id: diva2:1837204
Forskningsfinansiär
Kempestiftelserna, JCK-3159Kempestiftelserna, SMK-1632Vetenskapsrådet, 2017-05235Vetenskapsrådet, 2021-04805Knut och Alice Wallenbergs StiftelseTillgänglig från: 2024-02-13 Skapad: 2024-02-13 Senast uppdaterad: 2025-04-24Bibliografiskt granskad
Ingår i avhandling
1. Investigating the biology and specific targeting of individual G-quadruplex structures
Öppna denna publikation i ny flik eller fönster >>Investigating the biology and specific targeting of individual G-quadruplex structures
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Granskning av biologin hos G-quadruplex-strukturer och enskilt målinrikta dessa
Abstract [en]

G-quadruplex (G4) structures are non-canonical DNA and RNA conformations formed in guanine-rich regions that play roles in gene regulation, genome stability, and RNA processing. However, targeting the approximately 700,000 G4s in the human genome with high specificity remains challenging due to their structural similarities. Despite their biological significance, this inability to selectively study or manipulate individual G4s presents a significant barrier to understanding their distinct roles in human cells and complicates efforts to dissect their contributions to cellular processes.

To address this limitation, we developed a strategy based on click chemistry to covalently link short single-stranded oligonucleotides (Os) to G4 ligands (GLs). This approach combines the stabilising properties of G4 ligands with the sequence specificity of guide oligonucleotides to create G4-ligand-oligonucleotide (GL-O) conjugates. The oligonucleotide forms double-stranded DNA (dsDNA) with the flanking region of the target G4, ensuring selective binding and stabilisation of the desired G4 structure. Through biophysical and biochemical assays, we demonstrated that this approach enables the selective stabilisation of individual target G4s, highlighting its utility for studying specific G4 structures.

In refining the GL-O platform, we systematically evaluated various linker configurations. This work demonstrated that longer and more flexible linkers enhance the adaptability of GL-O conjugates, allowing efficient targeting of G4s with varying distances between the G4-forming region and the complementary oligonucleotide binding sequence. This insight is particularly valuable for addressing steric hindrances and expanding the range of targetable G4 structures.

Additionally, we explored the broader principles of G4 ligand design by focusing on dispersion forces and electrostatic interactions. Synthesising heterocyclic G4 ligands and studying their interactions with G4s showed that dispersion components in arene-arene interactions and electron-deficient electrostatics are central to achieving high-affinity binding and stabilisation. These findings enhance the GL-O approach by providing a framework to fine-tune the stabilisation effect of the GL-Os, potentially reducing off-target effects.

In parallel, we pursued a separate project that examined G4 structures within human mitochondrial DNA (mtDNA), aiming to elucidate their roles in cellular function. Human mtDNA contains regions that have been predicted to form G4 structures in silico. We mapped these mtDNA G4s using high-resolution techniques and demonstrated their formation in vivo. Stabilisation or replication stalling increases their formation, potentially contributing to mitochondrial dysfunction and genomic instability in disease. 

Together, these findings advance our understanding of G4 biology, from selective targeting strategies to the unique dynamics of mitochondrial G4s, offering valuable insights into the biological roles of G4s in maintaining genome stability and regulating cellular processes.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2025. s. 45
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2353
Nyckelord
G-quadruplex, G4-Ligand, Selective targeting, Ligand design, mitochondrial DNA
Nationell ämneskategori
Biokemi Medicinsk bioteknologi (Inriktn. mot cellbiologi (inkl. stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
urn:nbn:se:umu:diva-237289 (URN)978-91-8070-669-8 (ISBN)978-91-8070-670-4 (ISBN)
Disputation
2025-05-09, Lilla Hörsalen (KBE301), KBC huset, Linnaeus väg 6, 90736, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-04-16 Skapad: 2025-04-07 Senast uppdaterad: 2025-04-07Bibliografiskt granskad

Open Access i DiVA

fulltext(5866 kB)161 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5866 kBChecksumma SHA-512
1030a2440a352eff202667a466e30c55142bba302ff4ffa0750ac0b2d12769a71b631999aa10af2ec68d021b516c850d8920c34a2b7298cc4f4970af0e51af9a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Andréasson, MånsDonzel, MaximeAbrahamsson, AlvaBerner, AndreasDoimo, MaraQuiroga, AnnaEriksson, Anna U.Wanrooij, SjoerdChorell, Erik

Sök vidare i DiVA

Av författaren/redaktören
Andréasson, MånsDonzel, MaximeAbrahamsson, AlvaBerner, AndreasDoimo, MaraQuiroga, AnnaEriksson, Anna U.Wanrooij, SjoerdChorell, Erik
Av organisationen
Kemiska institutionenInstitutionen för medicinsk kemi och biofysik
I samma tidskrift
Journal of Medicinal Chemistry
Läkemedelskemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 161 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 616 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf