Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On some extensions of shape-constrained generalized additive modelling in R
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2024 (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Regression models that incorporate smooth functions of predictor variables to explain the relationships with a response variable have gained widespread usage and proved successful in various applications. By incorporating smooth functions of predictor variables, these models can capture complex relationships between the response and predictors while still allowing for interpretation of the results. In situations where the relationships between a response variable and predictors are explored, it is not uncommon to assume that these relationships adhere to certain shape constraints. Examples of such constraints include monotonicity and convexity. The scam package for R has become a popular package to carry out the full fitting of exponential family generalized additive modelling with shape restrictions on smooths. The paper aims to extend the existing framework of shape-constrained generalized additive models (SCAM) to accommodate smooth interactions of covariates, linear functionals of shape-constrained smooths and incorporation of residual autocorrelation. The methods described in this paper are implemented in the recent version of the package scam, available on the Comprehensive R Archive Network (CRAN).

Ort, förlag, år, upplaga, sidor
2024.
Nyckelord [en]
smoothing, shape constraints, interaction, smooth ANOVA, regression, linear functionals of smooths
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-222486DOI: 10.48550/arXiv.2403.09438OAI: oai:DiVA.org:umu-222486DiVA, id: diva2:1845572
Forskningsfinansiär
Vetenskapsrådet, 2022-04190Tillgänglig från: 2024-03-19 Skapad: 2024-03-19 Senast uppdaterad: 2024-03-19

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Pya Arnqvist, Natalya

Sök vidare i DiVA

Av författaren/redaktören
Pya Arnqvist, Natalya
Av organisationen
Institutionen för matematik och matematisk statistik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 233 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf