Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle
Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France.
Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France.
Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France.
Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Frontiers in Plant Science, E-ISSN 1664-462X, Vol. 15, artikel-id 1340304Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or ‘lit’ state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or ‘resting’ state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of ‘magneto-genetics’ for future applications in synthetic biology and medicine.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2024. Vol. 15, artikel-id 1340304
Nyckelord [en]
circadian clock, cryptochrome, flavoprotein, magnetic fields, photomorphogenesis, photoreceptor, redox, ROS
Nationell ämneskategori
Botanik
Identifikatorer
URN: urn:nbn:se:umu:diva-222640DOI: 10.3389/fpls.2024.1340304ISI: 001184928300001PubMedID: 38495372Scopus ID: 2-s2.0-85187904547OAI: oai:DiVA.org:umu-222640DiVA, id: diva2:1852821
Forskningsfinansiär
Novo Nordisk fonden, NNF19OC0055204Novo Nordisk fonden, NNF22OC0080100Novo Nordisk fonden, 2019OC53580Novo Nordisk fonden, NNF18OC0034226Novo Nordisk fonden, NNF20OC0061440Novo Nordisk fonden, NNF20OC0061673Novo Nordisk fonden, NNF19OC0057729Tillgänglig från: 2024-04-19 Skapad: 2024-04-19 Senast uppdaterad: 2024-04-19Bibliografiskt granskad

Open Access i DiVA

fulltext(2492 kB)215 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2492 kBChecksumma SHA-512
c058a5bea824d03e93cd0796f78f4131446f62637f9dfe54129e6abe297ad249e7ee6e9d671346a7d4d4ecf77e5ffa410c6027bba8cfcd6f08d76b0dfcfd8a0d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Wenkel, Stephan

Sök vidare i DiVA

Av författaren/redaktören
Wenkel, Stephan
Av organisationen
Institutionen för fysiologisk botanikUmeå Plant Science Centre (UPSC)
I samma tidskrift
Frontiers in Plant Science
Botanik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 215 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 934 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf