Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Differentially private traffic flow prediction using transformers: a federated approach
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-0368-8037
2024 (Engelska)Ingår i: Computer Security. ESORICS 2023 International Workshops: CyberICS, DPM, CBT, and SECPRE, The Hague, The Netherlands, September 25–29, 2023, Revised Selected Papers, Part I, Springer Nature, 2024, s. 260-271Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Accurate traffic flow prediction plays an important role in intelligent transportation management and reducing traffic congestion for smart cities. Existing traffic flow prediction techniques using deep learning, mostly LSTMs, have achieved enormous success based on the large traffic flow datasets collected by governments and different organizations. Nevertheless, a lot of these datasets contain sensitive attributes that may relate to users’ private data. Hence, there is a need to develop an accurate traffic flow prediction mechanism that preserves users’ privacy. To address this challenge, we propose a federated learning-based temporal fusion transformer framework for traffic flow prediction which is a distributed machine learning approach where all the model updates are aggregated through an aggregation algorithm rather than sharing and storing the raw data in one centralized location. The proposed framework trains the data locally on client devices using temporal fusion transformers and differential privacy. Experiments show that the proposed framework can guarantee accuracy in predicting traffic flow for both the short and long term.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024. s. 260-271
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 14398
Nyckelord [en]
Differential Privacy, Federated Learning, Temporal Fusion Transformer, Time Series Data, Traffic Flow Prediction
Nationell ämneskategori
Datavetenskap (datalogi) Datorsystem
Identifikatorer
URN: urn:nbn:se:umu:diva-222637DOI: 10.1007/978-3-031-54204-6_15Scopus ID: 2-s2.0-85187801384ISBN: 978-3-031-54203-9 (tryckt)ISBN: 978-3-031-54204-6 (digital)OAI: oai:DiVA.org:umu-222637DiVA, id: diva2:1852829
Konferens
International Workshops which were held in conjunction with 28th European Symposium on Research in Computer Security, ESORICS 2023, The Hauge, The Netherlands, September 25-29, 2023
Tillgänglig från: 2024-04-19 Skapad: 2024-04-19 Senast uppdaterad: 2024-04-19Bibliografiskt granskad

Open Access i DiVA

fulltext(1234 kB)194 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1234 kBChecksumma SHA-512
d27048379d57cc6c5c8cb1b4b01555659731daea90a90693cd03db267284941fe9d4d22a3cbca6041594d2df880aca952a41de248d19772363197333851ded48
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Gupta, SargamTorra, Vicenç

Sök vidare i DiVA

Av författaren/redaktören
Gupta, SargamTorra, Vicenç
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 194 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 493 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf