Rainbow variations on a theme by mantel: extremal problems for Gallai colouring templates
2024 (Engelska)Ingår i: Combinatorica, ISSN 0209-9683, E-ISSN 1439-6912, Vol. 44, s. 997-1010Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
Let G:=(G1,G2,G3) be a triple of graphs on the same vertex set V of size n. A rainbow triangle in G is a triple of edges (e1,e2,e3) with ei ∈ Gi for each i and {e1,e2,e3} forming a triangle in V. The triples G not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities (α1,α2,α3) such that if |E(Gi)| >αin2 for each i and n is sufficiently large, then G must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and Šámal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu.
Ort, förlag, år, upplaga, sidor
Springer Nature, 2024. Vol. 44, s. 997-1010
Nyckelord [en]
05C35, 05D99, Extremal graph theory, Gallai colourings, Mantel’s theorem, Rainbow triangles
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-224095DOI: 10.1007/s00493-024-00102-6ISI: 001209613600001Scopus ID: 2-s2.0-85191690527OAI: oai:DiVA.org:umu-224095DiVA, id: diva2:1858208
Forskningsfinansiär
Vetenskapsrådet, 2021-03687Olle Engkvists stiftelse, 213-02042024-05-162024-05-162024-10-28Bibliografiskt granskad