Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Developing machine learning models to predict multi-class functional outcomes and death three months after stroke in Sweden
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.ORCID-id: 0009-0006-1030-4237
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.ORCID-id: 0000-0002-9086-7403
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin.ORCID-id: 0000-0002-5917-0384
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.ORCID-id: 0000-0003-3298-1555
2024 (Engelska)Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 19, nr 5, artikel-id e0303287Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Globally, stroke is the third-leading cause of mortality and disability combined, and one of the costliest diseases in society. More accurate predictions of stroke outcomes can guide healthcare organizations in allocating appropriate resources to improve care and reduce both the economic and social burden of the disease. We aim to develop and evaluate the performance and explainability of three supervised machine learning models and the traditional multinomial logistic regression (mLR) in predicting functional dependence and death three months after stroke, using routinely-collected data. This prognostic study included adult patients, registered in the Swedish Stroke Registry (Riksstroke) from 2015 to 2020. Riksstroke contains information on stroke care and outcomes among patients treated in hospitals in Sweden. Prognostic factors (features) included demographic characteristics, pre-stroke functional status, cardiovascular risk factors, medications, acute care, stroke type, and severity. The outcome was measured using the modified Rankin Scale at three months after stroke (a scale of 0-2 indicates independent, 3-5 dependent, and 6 dead). Outcome prediction models included support vector machines, artificial neural networks (ANN), eXtreme Gradient Boosting (XGBoost), and mLR. The models were trained and evaluated on 75% and 25% of the dataset, respectively. Model predictions were explained using SHAP values. The study included 102,135 patients (85.8% ischemic stroke, 53.3% male, mean age 75.8 years, and median NIHSS of 3). All models demonstrated similar overall accuracy (69%-70%). The ANN and XGBoost models performed significantly better than the mLR in classifying dependence with F1-scores of 0.603 (95% CI; 0.594-0.611) and 0.577 (95% CI; 0.568-0.586), versus 0.544 (95% CI; 0.545-0.563) for the mLR model. The factors that contributed most to the predictions were expectedly similar in the models, based on clinical knowledge. Our ANN and XGBoost models showed a modest improvement in prediction performance and explainability compared to mLR using routinely-collected data. Their improved ability to predict functional dependence may be of particular importance for the planning and organization of acute stroke care and rehabilitation.

Ort, förlag, år, upplaga, sidor
Public Library of Science (PLoS), 2024. Vol. 19, nr 5, artikel-id e0303287
Nationell ämneskategori
Sannolikhetsteori och statistik Kardiologi och kardiovaskulära sjukdomar
Forskningsämne
statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-224459DOI: 10.1371/journal.pone.0303287ISI: 001245059300043PubMedID: 38739586Scopus ID: 2-s2.0-85192913786OAI: oai:DiVA.org:umu-224459DiVA, id: diva2:1858586
Tillgänglig från: 2024-05-17 Skapad: 2024-05-17 Senast uppdaterad: 2025-04-24Bibliografiskt granskad

Open Access i DiVA

fulltext(1427 kB)90 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1427 kBChecksumma SHA-512
764213ce5392a8e1ff37ccae233b868e1d6d03ba81f1af7db297153051dd1695e89fa76f01b3d92d995237f47b470323a97f29d4e21d4d0ca9375f320d367386
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Otieno, Josline AdhiamboHäggström, JennyDarehed, DavidEriksson, Marie

Sök vidare i DiVA

Av författaren/redaktören
Otieno, Josline AdhiamboHäggström, JennyDarehed, DavidEriksson, Marie
Av organisationen
StatistikInstitutionen för folkhälsa och klinisk medicin
I samma tidskrift
PLOS ONE
Sannolikhetsteori och statistikKardiologi och kardiovaskulära sjukdomar

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 90 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 337 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf