Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
AVVECKLING INOM SJUKFÖRSÄKRING: En studie kring modeller och variabler för optimering av avvecklingsfunktionen
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2024 (Svenska)Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

This essay is written in consultation with SPP (a Swedish insurance company), where we will investigate if it is possible to improve the settlement function for disability insurance by taking more variables into account. The settlement function describes the probability that an individual remains subject to compensation t months after the start of the illness and is an important component in the pricing of the disability insurance as well as in the allocation to sickness reserves. To be able to measure if the settlement function improves, we compare the settlement function with the estimated settlement obtained from Kaplan-Meier curves from historical illness cases. We use cases from SPP between 2009-2024 and cases from the Society of Actuaries (USA) between 2009-2017. Often, the age of the individual is used as a variable in the settlement function. Using SPP’s data, we test whether the settlement function improves when the gender of the individual is also taken into account. Nine different variables have been tested on the US data, including region, diagnosis, gender, industry and salary. In total, four models are tested on SPP’s data and six models on the US data. The result of the study is that the Random survival forest model, which is a Machine learning model, is the model that is by far best at reflecting the Kaplan-Meier curves. In addition, we developed our own model, which also reflects the Kaplan-Meier curves well. We also found that both gender and diagnosis improve the prediction of settlement. Region is a variable that is significant for the settlement of cases in the United States. In this study we have not dug deeper into that variable. However, it may be interesting in the future to investigate if region also affects the settlement of cases in Sweden. 

Ort, förlag, år, upplaga, sidor
2024. , s. 124
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-225636OAI: oai:DiVA.org:umu-225636DiVA, id: diva2:1865617
Externt samarbete
SPP Pension & Försäkring AB
Utbildningsprogram
Civilingenjörsprogrammet i industriell ekonomi
Handledare
Examinatorer
Tillgänglig från: 2024-06-10 Skapad: 2024-06-05 Senast uppdaterad: 2024-06-10Bibliografiskt granskad

Open Access i DiVA

fulltext(5888 kB)43 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5888 kBChecksumma SHA-512
62f643676650e1c42304c395119c5152488bfe7fc7bfab28454764603fc01af904cb73d9f660d8d1b233fe4769059639b5f0cedec0499e328a1a7134a2316a9b
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för matematik och matematisk statistik
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 43 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 304 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf