Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Open data, models, and software for machine automation
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Swedish University of Agricultural Sciences.ORCID-id: 0000-0002-6351-4469
Swedish University of Agricultural Sciences.
Skogforsk - the Forestry Research Institute of Sweden.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: IUFRO 2024: Detailed programme, 2024, artikel-id T5.10Konferensbidrag, Muntlig presentation med publicerat abstract (Övrigt vetenskapligt)
Abstract [en]

We create partially annotated datasets from field measurements for developing models and algorithms for perception and control of forest machines using artificial intelligence, simulation, and experiments on physical testbeds.  The datasets, algorithms, and trained models for object identification, 3D perception, and motion planning and control will be made publicly available through data and code-sharing repositories.

The data is recorded using forest machines and other equipment with suitable sensors operating in the forest environment. The data include the machine and crane tip position at high resolution, and event time logs (StanForD) while the vehicle operates in high-resolution laser-scanned forest areas.  For annotation, the plan is to use both CAN-bus data and audiovisual data from operators that are willing to participate in the research. Also, by fusing visual perception with operator tree characteristics input or decision, we aim to develop a method for auto-annotation, facilitating a rapid increase in labeled training data for computer vision. In other activities, images of tree plants and bark are collected.

Research questions include, how to automate the process of creating annotated datasets and train models for identifying and positioning forestry objects, such as plants, tree species, logs, terrain obstacles, and do 3D reconstruction for motion planning and control? How large and varied datasets are required for the models to handle the variability in forests, weather, light conditions, etc.? Would additional synthetic data increase model inference accuracy?

In part we focus on forwarders traversing terrain, avoiding obstacles, and loading or unloading logs, with consideration for efficiency, safety, and environmental impact. We explore how to auto-generate and calibrate forestry machine simulators and automation scenario descriptions using the data recorded in the field. The demonstrated automation solutions serve as proofs-of-concept and references, important for developing commercial prototypes and for understanding what future research should focus on.

Ort, förlag, år, upplaga, sidor
2024. artikel-id T5.10
Nationell ämneskategori
Data- och informationsvetenskap Robotteknik och automation
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-227458OAI: oai:DiVA.org:umu-227458DiVA, id: diva2:1879274
Konferens
IUFRO 2024 - XXVI IUFRO World Congress, Stockholm, Sweden, June 23-29, 2024
Forskningsfinansiär
Mistra - Stiftelsen för miljöstrategisk forskningTillgänglig från: 2024-06-27 Skapad: 2024-06-27 Senast uppdaterad: 2024-07-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Conference programme

Person

Fälldin, ArvidLundbäck, MikaelWallin, ErikServin, Martin

Sök vidare i DiVA

Av författaren/redaktören
Fälldin, ArvidHäggström, CarolaLindroos, OlaLundbäck, MikaelWallin, ErikServin, Martin
Av organisationen
Institutionen för fysik
Data- och informationsvetenskapRobotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 117 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf