Forwarder trafficability is a function of terrain and vehicle properties. Predicting trafficability is vital for energy efficient planning- and operator-assisting systems, as well as for remote and autonomous driving. Inaccurate or insufficient information can lead to inefficient paths, excessive fuel usage, equipment wear, and soil damages. Training trafficability models require data in a quantity hard to collect solely from in-field experiments, especially considering the need for data from situations ranging from very easy to non-traversable.
To circumvent this problem, we perform in-field system identification for a forwarder in the Nordic cut-to-length system, to obtain a calibrated multi-body dynamics simulation model traversing firm but potentially rough and blocky terrain. By letting the real-world forward derdrive in very difficult terrain, the model is able to reflect a wide range of real conditions. The model is used in simulations, where collecting large amounts of data from a variety of situations is easy, cheap, and hazard free. Using this data, a deep neural network is trained to predict trafficability in terms of attainable driving speed, energy consumption, and machine wear.
The resulting predictor model uses laser scanned terrains to efficiently produce trafficability measures with high fidelity and accuracy, e.g., depending on the vehicle’s precise location, speed, heading, and weight. Trafficability on wet and weak soil is not addressed in this work. The predictor model is machine specific, but general enough for practical application in diverse terrain conditions. Our emphasis on energy consumption enables elaborate calculations of emissions, profoundly contributing to sustainable forest operations. Apart from the benefits from reduced emissions, the model can also be used to optimize extraction trail routing, which is a major contributor to the total extraction cost. Rough terrain trafficability is only part of an optima loute, but it has been neglected in previous research. We see big potential in combining our predictor model with existing route optimization methods to achieve a more complete result. By creating an open library of annotated machine data and code for preparing input terrain-data and running the trafficability model, we enable adoption of the results by others and application in existing and new software.
2024. article id T5.30
IUFRO 2024 - XXVI IUFRO World Congress, Stockholm, Sweden, June 23-29, 2024