Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nematocida displodere mechanosensitive ion channel of small conductance 2 assembles into a unique 6-channel super-structure in vitro
Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).ORCID-id: 0000-0003-3609-2878
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).ORCID-id: 0000-0001-6848-322x
Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).ORCID-id: 0000-0003-2971-8190
2024 (Engelska)Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 19, nr 7, artikel-id e0301951Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mechanosensitive ion channels play an essential role in reacting to environmental signals and sustaining cell integrity by facilitating ion flux across membranes. For obligate intracellular pathogens like microsporidia, adapting to changes in the host environment is crucial for survival and propagation. Despite representing a eukaryote of extreme genome reduction, microsporidia have expanded the gene family of mechanosensitive ion channels of small conductance (mscS) through repeated gene duplication and horizontal gene transfer. All microsporidian genomes characterized to date contain mscS genes of both eukaryotic and bacterial origin. Here, we investigated the cryo-electron microscopy structure of the bacterially derived mechanosensitive ion channel of small conductance 2 (MscS2) from Nematocida displodere, an intracellular pathogen of Caenorhabditis elegans. MscS2 is the most compact MscS-like channel known and assembles into a unique superstructure in vitro with six heptameric MscS2 channels. Individual MscS2 channels are oriented in a heterogeneous manner to one another, resembling an asymmetric, flexible six-way cross joint. Finally, we show that microsporidian MscS2 still forms a heptameric membrane channel, however the extreme compaction suggests a potential new function of this MscS-like protein.

Ort, förlag, år, upplaga, sidor
Public Library of Science (PLoS) , 2024. Vol. 19, nr 7, artikel-id e0301951
Nationell ämneskategori
Cell- och molekylärbiologi Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
URN: urn:nbn:se:umu:diva-228127DOI: 10.1371/journal.pone.0301951ISI: 001275033300024PubMedID: 39038013Scopus ID: 2-s2.0-85199312231OAI: oai:DiVA.org:umu-228127DiVA, id: diva2:1887014
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseFamiljen Erling-Perssons StiftelseKempestiftelsernaScience for Life Laboratory, SciLifeLabStockholms universitetUmeå universitetTillgänglig från: 2024-08-06 Skapad: 2024-08-06 Senast uppdaterad: 2024-09-23Bibliografiskt granskad
Ingår i avhandling
1. How evolutionary adaptation perfects the pathogenic lifestyle: structural characterization of pathogenic protein complexes, machineries, and virulence factors
Öppna denna publikation i ny flik eller fönster >>How evolutionary adaptation perfects the pathogenic lifestyle: structural characterization of pathogenic protein complexes, machineries, and virulence factors
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Hur evolutionär anpassning fulländar den patogena lifsstilen : strukturell karakterisering av patogena proteinkomplex, maskinerier och virulensfaktorer
Abstract [en]

Pathogens have developed sophisticated strategies to thrive in hostile host environments. They use species-specific innovations and virulence factors to successfully invade and replicate in host organisms, including humans. Many pathogen infections cause disease and sometimes death, which affects not only the medical but also the agricultural and environmental sectors. 

A strategy to combat infectious disease is to better understand the pathogen’s biology at a molecular level. In particular, the identification, structural, and biochemical characterization of virulence factors that are essential for infection can provide a solid basis for antimicrobial drug development. 

This thesis focuses on two types of pathogens that have evolved ingenious mechanisms to adapt to their hosts: Microsporidia, which are fungal-like, obligate intracellular pathogens that streamlined their genomes for optimal parasitism, and Vibrio cholerae, a Gram-negative bacterium with numerous virulence genes, and the etiological agent of cholera disease. 

In the first project of my thesis, we developed a tool for the functional genome annotation of divergent organisms like microsporidia. To overcome the problematic annotation of divergent genomes, due to low sequence similarity, our tool complements traditional sequence-based annotation with structural similarity matching. We used this method to annotate the newly sequenced genome of Vairimorpha necatrix, a microsporidian parasite of Lepidoptera (e.g., butterflies and moths). The addition of structural similarity matching improved the quality and accuracy of the genome annotation. Further, the resulting annotation can serve as a reference to curate other microsporidian genomes. This will increase our understanding of the parasites’ proteomic repertoire and help us to identify potential virulence factors that can be studied experimentally. 

In the second study, we analyzed the cryogenic electron microscopy (cryo-EM) structure of the mechanosensitive ion channel of small conductance 2 (MscS2) from Nematocida displodere, a microsporidian pathogen of Caenorhabditis elegans. Microsporidia acquired mscS2 from bacteria via horizontal gene transfer and drastically shortened its sequence length, leading to the loss of the mechanosensation domain. In our in vitro setting, MscS2 oligomerizes into a unique superstructure where six heptameric MscS2 channels form an asymmetric, flexible six-way cross joint. We show that, despite its drastic reduction, MscS2 still forms a homo-heptameric membrane-associated channel. However, the loss of the sensory domain indicates that microsporidia evolved MscS2 to fulfill a new function. 

In the third project, we solved the cryo-EM structure of the V. cholerae toxin motility-associated killing factor A (MakA). MakA is part of the ɑ-pore-forming toxin (ɑ-PFT) MakBAE, which inserts into host cell membranes and is cytotoxic. However, in the absence of MakB and MakE, at low pH, and in the presence of membrane vesicles, MakA by itself changes its conformation and oligomerizes into a helical structure. This helix comprises MakA dimer pairs that spiral around a central, circular cavity. Near the cavity and the MakA transmembrane helices, we observed an annular lipid bilayer. This suggests that MakA depletes membranous vesicles of their lipids. While we believe this helical assembly is a non- physiological artifact, our analyses demonstrate that MakA changes its conformation and inserts itself into cell membranes, where it oligomerizes, ultimately leading to cell death in vitro. Further, we observed four different conformations of MakA within the dimer pairs, which displays the protein’s dynamic behavior. We assume that MakA adopts one of these conformations when forming an ɑ-PFT with MakB and MakE. 

The findings of my thesis contribute to the identification and understanding of protein families and virulence factors that microsporidia and Vibrio cholera employ to conquer and exploit their hosts. In conclusion, the thesis provides key pieces of knowledge that can help the future development of inhibitors against these pathogens. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2024. s. 45
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2326
Nyckelord
Microsporidia, Vibrio cholerae, Evolutionary adaptation, Mechanosensitive ion channel of small conductance, Alpha pore-forming toxins, Single particle cryo-electron microscopy, Genome annotation
Nationell ämneskategori
Biokemi Molekylärbiologi Strukturbiologi
Forskningsämne
biokemi; infektionssjukdomar; molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-229954 (URN)978-91-8070-497-7 (ISBN)978-91-8070-498-4 (ISBN)
Disputation
2024-10-23, NBET.A101 - Norra Beteendevetarhuset, Humanioragränd 5, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-10-02 Skapad: 2024-09-23 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

fulltext(3017 kB)101 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3017 kBChecksumma SHA-512
074c888ec1f14f1fb6e70045f4d3e6a3adf735ad0ddaea652e1ed990833a8b70f9af58790409fa70746d3e6b6b36cde18ee191dc639ca1bbf3728f8740ce03b0
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Berg, AlexandraBerntsson, Ronnie P.-A.Barandun, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Berg, AlexandraBerntsson, Ronnie P.-A.Barandun, Jonas
Av organisationen
Molekylär Infektionsmedicin, Sverige (MIMS)Umeå Centre for Microbial Research (UCMR)Institutionen för medicinsk kemi och biofysikWallenberg centrum för molekylär medicin vid Umeå universitet (WCMM)Institutionen för molekylärbiologi (Medicinska fakulteten)
I samma tidskrift
PLOS ONE
Cell- och molekylärbiologiMedicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 101 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 216 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf