Robustness and accuracy in pipelined Bi-Conjugate Gradient Stabilized methods
2024 (Engelska)Ingår i: Computational science – ICCS 2024: 24th International Conference, Malaga, Spain, July 2–4, 2024, Proceedings, Part III / [ed] Leonardo Franco; Clélia de Mulatier; Maciej Paszynski; Valeria V. Krzhizhanovskaya; Jack J. Dongarra; Peter M. A. Sloot, Springer, 2024, s. 311-319Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]
In this article, we propose an accuracy-assuring technique for finding a solution for unsymmetric linear systems. Such problems are related to different areas such as image processing, computer vision, and computational fluid dynamics. Parallel implementation of Krylov subspace methods speeds up finding approximate solutions for linear systems. In this context, the refined approach in pipelined BiCGStab enhances scalability on distributed memory machines, yielding to substantial speed improvements compared to the standard BiCGStab method. However, it’s worth noting that the pipelined BiCGStab algorithm sacrifices some accuracy, which is stabilized with the residual replacement technique. This paper aims to address this issue by employing the ExBLAS-based reproducible approach. We validate the idea on a set of matrices from the SuiteSparse Matrix Collection.
Ort, förlag, år, upplaga, sidor
Springer, 2024. s. 311-319
Serie
Lecture notes in computer science, ISSN 0302-9743, E-ISSN 1611-3349 ; 14834
Nyckelord [en]
BiCGStab, ExBLAS, HPC, Krylov subspace methods, Numerical reliability, Residual replacement
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:umu:diva-228515DOI: 10.1007/978-3-031-63759-9_35ISI: 001279325500035Scopus ID: 2-s2.0-85199660458ISBN: 9783031637582 (tryckt)ISBN: 9783031637599 (digital)OAI: oai:DiVA.org:umu-228515DiVA, id: diva2:1890730
Konferens
24th International Conference on Computational Science, ICCS 2024, Malaga, Spain, July 2–4, 2024
2024-08-202024-08-202025-04-24Bibliografiskt granskad