Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Shape calculus for fitted and unfitted discretizations: domain transformations vs. boundary-face dilations
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-0473-3263
2023 (Engelska)Ingår i: Communications in Optimization Theory, ISSN 2051-2953, artikel-id 27Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Shape calculus concerns the calculation of directional derivatives of some quantity of interest, typically expressed as an integral. This article introduces a type of shape calculus based on localized dilation of boundary faces through perturbations of a level-set function. The calculus is tailored for shape optimization problems where a partial differential equation is numerically solved using a fictitious-domain method. That is, the boundary of a domain is allowed to cut arbitrarily through a computational mesh, which is held fixed throughout the computations. Directional derivatives of a volume or surface integral using the new shape calculus yield purely boundary-supported expressions, and the involved integrands are only required to be element-wise smooth. However, due to this low regularity, only one-sided differentiability can be guaranteed in general. The dilation concept introduced here differs from the standard approach to shape calculus, which is based on domain transformations. The use of domain transformations is closely linked the the use of traditional body-fitted discretization approaches, where the computational mesh is deformed to conform to the changing domain shape. The directional derivatives coming out of a shape calculus using deforming meshes under domain transformations are different then the ones from the boundary-dilation approach using fixed meshes; the former are not purely boundary supported but contain information also from the interior.

Ort, förlag, år, upplaga, sidor
London: Mathematical Research Press , 2023. artikel-id 27
Nyckelord [en]
Shape optimization, Shape calculus, Sensitivity analysis, Finite element methods, Fictitious domain methods, CutFEM, XFEM
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
matematik; numerisk analys
Identifikatorer
URN: urn:nbn:se:umu:diva-229172DOI: 10.23952/cot.2023.27OAI: oai:DiVA.org:umu-229172DiVA, id: diva2:1895098
Forskningsfinansiär
Vetenskapsrådet, 2018-03546Tillgänglig från: 2024-09-04 Skapad: 2024-09-04 Senast uppdaterad: 2025-02-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Berggren, Martin

Sök vidare i DiVA

Av författaren/redaktören
Berggren, Martin
Av organisationen
Institutionen för datavetenskap
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 77 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf