Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying climate-related failures in railway infrastructure using machine learning
Department of Civil, Environmental, and Natural Resources Engineering, Division of Operation, Maintenance and Acoustics, Luleå University of Technology, Luleå, Sweden; Department of Mathematics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
Department of Civil, Environmental, and Natural Resources Engineering, Division of Operation, Maintenance and Acoustics, Luleå University of Technology, Luleå, Sweden.
Department of Civil, Environmental, and Natural Resources Engineering, Division of Operation, Maintenance and Acoustics, Luleå University of Technology, Luleå, Sweden.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Transportation Research Part D: Transport and Environment, ISSN 1361-9209, E-ISSN 1879-2340, Vol. 135, artikel-id 104371Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Climate change impacts pose challenges to a dependable operation of railway infrastructure assets, thus necessitating understanding and mitigating its effects. This study proposes a machine learning framework to distinguish between climatic and non-climatic failures in railway infrastructure. The maintenance data of turnout assets from Sweden's railway were collected and integrated with asset design, geographical and meteorological parameters. Various machine learning algorithms were employed to classify failures across multiple time horizons. The Random Forest model demonstrated a high accuracy of 0.827 and stable F1-scores across all time horizons. The study identified minimum-temperature and quantity of snow and rain prior to the event as the most influential factors. The 24-hour time horizon prior to failure emerged as the most effective time window for the classification. The practical implications and applications include enhancement of maintenance and renewal process, supporting more effective resource allocation, and implementing climate adaptation measures towards resilience railway infrastructure management.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024. Vol. 135, artikel-id 104371
Nyckelord [en]
Climate Change, Climate-related Failure Classification, Environmental Impact, Railway Infrastructure, Switches and Crossing
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik Infrastrukturteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-228897DOI: 10.1016/j.trd.2024.104371ISI: 001300892500001Scopus ID: 2-s2.0-85201648279OAI: oai:DiVA.org:umu-228897DiVA, id: diva2:1896285
Forskningsfinansiär
Forskningsrådet Formas, 2022-00835Tillgänglig från: 2024-09-10 Skapad: 2024-09-10 Senast uppdaterad: 2024-09-10Bibliografiskt granskad

Open Access i DiVA

fulltext(6837 kB)95 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6837 kBChecksumma SHA-512
52b33b7563c7a1c49813e9b6dc8b8530d1ee51a85de77b7f901a4449e888fb27cfba498efa2ad36a39160667224b52e85488ae263dd17465d12b9cbcb1673954
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Karbalaie, Abdolamir

Sök vidare i DiVA

Av författaren/redaktören
Karbalaie, Abdolamir
Av organisationen
Avdelningen för fysioterapi
I samma tidskrift
Transportation Research Part D: Transport and Environment
Tillförlitlighets- och kvalitetsteknikInfrastrukturteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 95 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 200 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf