Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Event detection in surveillance videos: a review
Department of Information Systems and Technology, Mid Sweden University, Sundsvall, Sweden.ORCID-id: 0000-0001-7320-2306
2022 (Engelska)Ingår i: Multimedia tools and applications, ISSN 1380-7501, E-ISSN 1573-7721, Vol. 81, nr 24, s. 35463-35501Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Since 2008, a variety of systems have been designed to detect events in security cameras. There are also more than a hundred journal articles and conference papers published in this field. However, no survey has focused on recognizing events in the surveillance system. Thus, motivated us to provide a comprehensive review of the different developed event detection systems. We start our discussion with the pioneering methods that used the TRECVid-SED dataset and then developed methods using VIRAT dataset in TRECVid evaluation. To better understand the designed systems, we describe the components of each method and the modifications of the existing method separately. We have outlined the significant challenges related to untrimmed security video action detection. Suitable metrics are also presented for assessing the performance of the proposed models. Our study indicated that the majority of researchers classified events into two groups on the basis of the number of participants and the duration of the event for the TRECVid-SED Dataset. Depending on the group of events, one or more models to identify all the events were used. For the VIRAT dataset, object detection models to localize the first stage activities were used throughout the work. Except one study, a 3D convolutional neural network (3D-CNN) to extract Spatio-temporal features or classifying different activities were used. From the review that has been carried, it is possible to conclude that developing an automatic surveillance event detection system requires three factors: accurate and fast object detection in the first stage to localize the activities, and classification model to draw some conclusion from the input values.

Ort, förlag, år, upplaga, sidor
Springer Netherlands, 2022. Vol. 81, nr 24, s. 35463-35501
Nyckelord [en]
Event detection, Surveillance videos system, Action and activity recognition
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-229458DOI: 10.1007/s11042-021-11864-2ISI: 000815440600001Scopus ID: 2-s2.0-85136167981OAI: oai:DiVA.org:umu-229458DiVA, id: diva2:1896349
Forskningsfinansiär
MittuniversitetetTillgänglig från: 2024-09-10 Skapad: 2024-09-10 Senast uppdaterad: 2024-09-11Bibliografiskt granskad

Open Access i DiVA

fulltext(2141 kB)60 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2141 kBChecksumma SHA-512
3e26f765e77b1c4bbdfb3f349d8c77959ed164f0b3367c5bce9d31412bdedb8b1863298043cbbf5f977bed59a62909c903ce0ecad2918c293b2009e8d4df1865
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Karbalaie, Abdolamir

Sök vidare i DiVA

Av författaren/redaktören
Karbalaie, Abdolamir
I samma tidskrift
Multimedia tools and applications
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 61 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 515 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf