Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The CD4 T cell epigenetic JUNB+ state is associated with proliferation and exhaustion
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). National Research School of Chronic Inflammatory Diseases (NRSCID), Karolinska Institutet, Stockholm, Sweden. (Johan Henriksson)ORCID-id: 0000-0002-9322-5879
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).ORCID-id: 0000-0002-5420-9702
Medical University of Vienna, Institute of Immunology, Division of Immunobiology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria.ORCID-id: 0000-0002-4979-8311
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.ORCID-id: 0000-0001-6904-742x
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Adoptive cell therapy (ACT) requires the in vitro expansion of T cells, a process where currently several variables are poorly controlled. As the state and quality of the cells affects the treatment outcome, the lack of insight is problematic. To get a better understanding of the production process and its degrees of freedom, we have generated a multiome CD4 T cell single-cell atlas. We find in particular a JUNB+ epigenetic state, orthogonal to traditional CD4 T cell subtype categorization. This new state is present but overlooked in previous transcriptomic CD4 T cell atlases. We characterize it to be highly proliferative, having condensed and actively remodeled chromatin, and correlating with exhaustion. JUNB+ subsets are also linked to memory formation, as well as circadian rhythm, connecting several important processes into one state. To dissect JUNB regulation, we also derived a gene regulatory network (GRN) and developed a new explainable machine learning package, Nando. We propose potential upstream drivers of JUNB, verified by other atlases and orthogonal data. We expect our results to be relevant for optimizing in vitro ACT conditions as well as modulation of gene expression through novel gene editing.

Nyckelord [en]
Single-cell, CD4 T cell, Epigenetics, Multiome, RNA-seq, ATAC-seq, JUNB, CAR T cell, Adoptive cell therapy, Bioreactor
Nationell ämneskategori
Genetik och genomik Bioinformatik (beräkningsbiologi) Immunologi inom det medicinska området
Identifikatorer
URN: urn:nbn:se:umu:diva-231111DOI: 10.1101/2024.01.05.573875OAI: oai:DiVA.org:umu-231111DiVA, id: diva2:1907866
Tillgänglig från: 2024-10-23 Skapad: 2024-10-23 Senast uppdaterad: 2025-02-01Bibliografiskt granskad
Ingår i avhandling
1. A systems biology single cell approach for querying the differentiation of immune system and antiviral response
Öppna denna publikation i ny flik eller fönster >>A systems biology single cell approach for querying the differentiation of immune system and antiviral response
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
En systembiologisk studie av differentiering av immunförsvaret och antiviral respons på nivån av individuella celler
Abstract [en]

This thesis leverages the power of single-cell RNA and ATAC sequencing to enhance our understanding of the innate and adaptive immune systems in higher mammals. The primary focus is on the transcriptional networks that guide the activation and differentiation of human primary CD4+ T cells into Th1, Th2, Th17, and iTreg subsets, using a GMP-based protocol and ex vivo/in vitro approaches. Additionally, computational models for gene regulatory network (GRN) inference and analysis were employed to elucidate gene regulation using a data-driven, multi-omics approach. This research also encompasses viral response-related studies to provide a comprehensive view of the immune response, specifically targeting the central nervous system (CNS) upon TBEV infection and lung tissues during SARS-CoV-2 infection.

In Paper 1, a multi-omics linear and non-linear approach is developed to predict gene popularity using a large number of high-throughput sequencing datasets. We show that additional omics layers are beneficial to construct GRNs capable of accurately predicting gene popularity. In Paper 2, a comprehensive atlas of human primary CD4+ T cell activation and differentiation is created using in vitro cell differentiation and single-cell RNA and ATAC sequencing. Novel gene regulatory dynamics of JUNB are identified, and a new probabilistic approach based on Markov chains for GRN analysis and interpretation is introduced. In Paper 3, the connection between type I interferon response in the mouse brain and TBEV infection is explored using single nuclei RNA sequencing. In Paper 4, the role of intrinsic resistance factors in human COVID-19 susceptibility is investigated using both single-cell and bulk RNA sequencing, and identifies SERPINS as critical regulators of the process.

The findings of this thesis contribute significantly to the understanding of transcriptional networks governing human CD4+ T cell differentiation and activation. This work aims to improve therapy and demonstrate the efficacy of NGS and computational tools in deciphering the transcriptional networks involved in various viral infections.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2024. s. 84
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2332
Nyckelord
scRNA-seq, scATAC-seq, snRNA-seq, innate immune system, adaptive immune system, CD4+ T cells, Th1, Th2, Th17, iTreg, gene regulatory networks, community detection, multi-omics, tick-borne encephalitis virus, SARS-CoV-2, NGS, SERPIN, type I interferon, mouse, human
Nationell ämneskategori
Cell- och molekylärbiologi Bioinformatik (beräkningsbiologi) Immunologi Genetik och genomik Bioinformatik och beräkningsbiologi
Forskningsämne
molekylärbiologi; genetik; biologi; immunologi; datalogi
Identifikatorer
urn:nbn:se:umu:diva-231112 (URN)9789180705462 (ISBN)9789180705479 (ISBN)
Disputation
2024-11-25, Major Groove 6L, Norrlands universitetssjukhus, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-11-04 Skapad: 2024-11-01 Senast uppdaterad: 2025-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Mihai, Ionut SebastianSelinger, MartinForsell, MattiasTrygg, JohanHenriksson, Johan

Sök vidare i DiVA

Av författaren/redaktören
Mihai, Ionut SebastianSelinger, MartinBoucheron, NicoleForsell, MattiasMagalhaes, IsabelleTrygg, JohanHenriksson, Johan
Av organisationen
Institutionen för molekylärbiologi (Medicinska fakulteten)Molekylär Infektionsmedicin, Sverige (MIMS)Umeå Centre for Microbial Research (UCMR)Institutionen för klinisk mikrobiologiKemiska institutionen
Genetik och genomikBioinformatik (beräkningsbiologi)Immunologi inom det medicinska området

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 80 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf