Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ion escape from degenerate induced magnetospheres: the case of Mars
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.
Swedish Institute of Space Physics, Kiruna, Sweden.
Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0001-5494-5374
Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0003-0574-4423
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007Artikel i tidskrift (Refereegranskat) Submitted
Ort, förlag, år, upplaga, sidor
2025.
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
URN: urn:nbn:se:umu:diva-234946OAI: oai:DiVA.org:umu-234946DiVA, id: diva2:1934179
Tillgänglig från: 2025-02-03 Skapad: 2025-02-03 Senast uppdaterad: 2025-02-12
Ingår i avhandling
1. Modeling the effects of solar conditions on the interaction of the solar wind with Mars
Öppna denna publikation i ny flik eller fönster >>Modeling the effects of solar conditions on the interaction of the solar wind with Mars
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Modellering av solens effekt på växelverkan mellan solvinden och Mars
Abstract [en]

As the solar wind reaches Mars, planetary ions mass-load the flow, slowing it down and creating a bow shock upstream of the planet. The convective electric field, coming from the solar wind flow and solar wind magnetic field, results in a potential difference across the conducting ionosphere that in turn results in induction currents flowing through the conductor (unipolar induction). The magnetic fields associated with the induction currents cancel (or reduce due to finite conductivity) the magnetic field inside the ionosphere (Lenz’s law). Above the ionosphere, the induced fields act on the solar wind plasma by deviating it, thus a void called an induced magnetosphere is created. Without a global magnetic field, Mars’ atmosphere is eroded by the solar wind, an ongoing atmospheric escape that has significantly influenced its climatic evolution. For present Mars, the dominant escape of atmospheric neutrals is through four channels: Jeans escape, photochemical reactions, sputtering and electron impact ionization, while ions above the exobase are accelerated by the solar wind convective electric field to escape.

In this study, we introduce a new method for estimating heavy ion (O+, O+2, and CO+2) escape rates from Mars, combining a hybrid plasma model with observational data. We use observed upstream solar wind parameters as input for a hybrid plasma model, where the total ion upflux at the exobase is a free parameter. We then vary this ion upflux to find the best fit to the observed bow shock location. This method gives us a self-consistent description of the Mars-solar wind interaction, which enables broader analyses of the interaction’s properties, beyond just escape.

We investigate the influence of external factors, solar EUV radiation, solar wind dynamic pressure, interplanetary magnetic field (IMF) strength, and IMF cone angle on Martian heavy ion escape. Our results reveal that ion escape increases with stronger EUV radiation and solar wind dynamic pressure, but decreases with a higher IMF strength and cone angle. In an extreme case study when the solar wind flowis nearly aligned with the solar IMF, the induced magnetosphere of Mars degenerates, and the bow shock on the dayside disappears, ions flowing towards the sun are accelerated by the ambipolar field, and a large-scale E×B cross-flow structure forms, dramatically increasing ionescape. We therefore call this type of interaction a degenerate induced magnetosphere. Finally, we compare the interactions of Mars and Venus in response to similar solar wind conditions, finding significant similarities in their responses as unmagnetized planets, further informing our understanding of atmospheric escape and solar wind interactions with unmagnetized bodies. 

Ort, förlag, år, upplaga, sidor
Umeå University, 2025. s. 67
Serie
IRF Scientific Report, ISSN 0284-1703 ; 319
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
urn:nbn:se:umu:diva-235036 (URN)978-91-8070-590-5 (ISBN)978-91-8070-591-2 (ISBN)
Disputation
2025-03-07, Ljusårssalen, Institutet för Rymdfysik, Bengt Hultqvist väg 1, Kriuna, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-02-14 Skapad: 2025-02-05 Senast uppdaterad: 2025-02-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Zhang, QiBarabash, StasHolmström, MatsWang, Xiao-DongFutaana, YoshifumiNilsson, Hans

Sök vidare i DiVA

Av författaren/redaktören
Zhang, QiBarabash, StasHolmström, MatsWang, Xiao-DongFutaana, YoshifumiNilsson, Hans
Av organisationen
Institutionen för fysik
I samma tidskrift
Geophysical Research Letters
Fusion, plasma och rymdfysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 73 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf