Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pioneering eco-efficiency in cloud computing: a carbon-conscious reinforcement learning approach to federated learning
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-2514-3043
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-2633-6798
2025 (Engelska)Ingår i: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 12, nr 7, s. 8958-8979Artikel i tidskrift, Letter (Refereegranskat) Published
Abstract [en]

In response to the growing emphasis on sustainability in federated learning (FL), this research introduces a dynamic, dual-objective optimization framework called Carbon-Conscious Federated Reinforcement Learning (CCFRL). By leveraging Reinforcement Learning (RL), CCFRL continuously adapts client allocation and resource usage in real-time, optimizing both carbon efficiency and model performance. Unlike static or greedy methods that prioritize short-term carbon constraints, existing approaches often suffer from either degrading model performance by excluding high-quality, energy-intensive clients or failing to adequately balance carbon emissions with long-term efficiency. CCFRL addresses these limitations by taking a more sustainable method, balancing immediate resource needs with long-term sustainability, and ensuring that energy consumption and carbon emissions are minimized without compromising model quality, even with non-IID (non-independent and identically distributed) and large-scale datasets. We overcome the shortcomings of existing methods by integrating advanced state representations, adaptive exploration and exploitation transitions, and stagnating detection using t-tests to better manage real-world data heterogeneity and complex, non-linear datasets. Extensive experiments demonstrate that CCFRL significantly reduces both energy consumption and carbon emissions while maintaining or enhancing performance. With up to a 61.78% improvement in energy conservation and a 64.23% reduction in carbon emissions, CCFRL proves the viability of aligning resource management with sustainability goals, paving the way for a more environmentally responsible future in cloud computing.

Ort, förlag, år, upplaga, sidor
IEEE, 2025. Vol. 12, nr 7, s. 8958-8979
Nyckelord [en]
Carbon, Cloud Computing, Reinforcement Learning, Federated Learning
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
systemanalys; datalogi
Identifikatorer
URN: urn:nbn:se:umu:diva-236166DOI: 10.1109/JIOT.2024.3504260ISI: 001453105600004Scopus ID: 2-s2.0-105001346663OAI: oai:DiVA.org:umu-236166DiVA, id: diva2:1942816
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP)Tillgänglig från: 2025-03-06 Skapad: 2025-03-06 Senast uppdaterad: 2025-04-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Seo, EunilElmroth, Erik

Sök vidare i DiVA

Av författaren/redaktören
Seo, EunilElmroth, Erik
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
IEEE Internet of Things Journal
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 143 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf