Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Linker design principles for the precision targeting of oncogenic G-quadruplex DNA with G4-ligand-conjugated oligonucleotides
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0009-0004-3292-1637
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.ORCID-id: 0000-0001-7864-8403
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

G-quadruplex (G4) DNA structures are noncanonical secondary structures found in key regulatory regions of the genome, including oncogenic promoters and telomeres. Small molecules, known as G4 ligands, capable of stabilizing G4s hold promise as chemical probes and therapeutic agents. Nevertheless, achieving precise specificity for individual G4 structures within the human genome remains a significant challenge. To address this, we expand upon G4-ligand-conjugated oligonucleotides (GL-Os), a modular platform combining the stabilizing properties of G4-ligands with the sequence specificity of guide DNA oligonucleotides. Central to this strategy is the linker that bridges the G4 ligand and the guide oligonucleotide. In this study, we develop multiple conjugation strategies for the GL-Os that enabled a systematic investigation of the linker in both chemical composition and length, enabling a thorough assessment of their impact on targeting oncogenic G4 DNA. Biophysical, biochemical, and computational evaluations revealed GL-Os with optimized linkers that exhibited enhanced binding to target G4s, even under thermal or structural stress. Notably, longer linkers broadened the range of targetable sequences without introducing steric hindrance, thereby enhancing the platform’s applicability across diverse genomic contexts. These findings establish GL-Os as a robust and versatile tool for the selective targeting of individual G4s. By facilitating precise investigations of G4 biology, this work provides a foundation for advancing G4-targeted therapeutic strategies and exploring their role in disease contexts.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2025.
Nationell ämneskategori
Biokemi
Identifikatorer
URN: urn:nbn:se:umu:diva-237287DOI: 10.1021/acs.bioconjchem.5c00008ISI: 001448909600001PubMedID: 40112195Scopus ID: 2-s2.0-105000394779OAI: oai:DiVA.org:umu-237287DiVA, id: diva2:1950312
Forskningsfinansiär
Vetenskapsrådet, VR-MH 2023-02160Vetenskapsrådet, VR-NT 2021-04805Kempestiftelserna, JCK-3159Kempestiftelserna, SMK21-0059Knut och Alice Wallenbergs StiftelseCancerfonden, 23 2793 PjVetenskapsrådet, VR-MH 2023-02160Vetenskapsrådet, VR-NT 2021-04805Kempestiftelserna, JCK-3159Kempestiftelserna, SMK21-0059Knut och Alice Wallenbergs StiftelseCancerfonden, 23 2793 PjTillgänglig från: 2025-04-07 Skapad: 2025-04-07 Senast uppdaterad: 2025-04-07
Ingår i avhandling
1. Investigating the biology and specific targeting of individual G-quadruplex structures
Öppna denna publikation i ny flik eller fönster >>Investigating the biology and specific targeting of individual G-quadruplex structures
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Granskning av biologin hos G-quadruplex-strukturer och enskilt målinrikta dessa
Abstract [en]

G-quadruplex (G4) structures are non-canonical DNA and RNA conformations formed in guanine-rich regions that play roles in gene regulation, genome stability, and RNA processing. However, targeting the approximately 700,000 G4s in the human genome with high specificity remains challenging due to their structural similarities. Despite their biological significance, this inability to selectively study or manipulate individual G4s presents a significant barrier to understanding their distinct roles in human cells and complicates efforts to dissect their contributions to cellular processes.

To address this limitation, we developed a strategy based on click chemistry to covalently link short single-stranded oligonucleotides (Os) to G4 ligands (GLs). This approach combines the stabilising properties of G4 ligands with the sequence specificity of guide oligonucleotides to create G4-ligand-oligonucleotide (GL-O) conjugates. The oligonucleotide forms double-stranded DNA (dsDNA) with the flanking region of the target G4, ensuring selective binding and stabilisation of the desired G4 structure. Through biophysical and biochemical assays, we demonstrated that this approach enables the selective stabilisation of individual target G4s, highlighting its utility for studying specific G4 structures.

In refining the GL-O platform, we systematically evaluated various linker configurations. This work demonstrated that longer and more flexible linkers enhance the adaptability of GL-O conjugates, allowing efficient targeting of G4s with varying distances between the G4-forming region and the complementary oligonucleotide binding sequence. This insight is particularly valuable for addressing steric hindrances and expanding the range of targetable G4 structures.

Additionally, we explored the broader principles of G4 ligand design by focusing on dispersion forces and electrostatic interactions. Synthesising heterocyclic G4 ligands and studying their interactions with G4s showed that dispersion components in arene-arene interactions and electron-deficient electrostatics are central to achieving high-affinity binding and stabilisation. These findings enhance the GL-O approach by providing a framework to fine-tune the stabilisation effect of the GL-Os, potentially reducing off-target effects.

In parallel, we pursued a separate project that examined G4 structures within human mitochondrial DNA (mtDNA), aiming to elucidate their roles in cellular function. Human mtDNA contains regions that have been predicted to form G4 structures in silico. We mapped these mtDNA G4s using high-resolution techniques and demonstrated their formation in vivo. Stabilisation or replication stalling increases their formation, potentially contributing to mitochondrial dysfunction and genomic instability in disease. 

Together, these findings advance our understanding of G4 biology, from selective targeting strategies to the unique dynamics of mitochondrial G4s, offering valuable insights into the biological roles of G4s in maintaining genome stability and regulating cellular processes.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2025. s. 45
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2353
Nyckelord
G-quadruplex, G4-Ligand, Selective targeting, Ligand design, mitochondrial DNA
Nationell ämneskategori
Biokemi Medicinsk bioteknologi (Inriktn. mot cellbiologi (inkl. stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
urn:nbn:se:umu:diva-237289 (URN)978-91-8070-669-8 (ISBN)978-91-8070-670-4 (ISBN)
Disputation
2025-05-09, Lilla Hörsalen (KBE301), KBC huset, Linnaeus väg 6, 90736, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-04-16 Skapad: 2025-04-07 Senast uppdaterad: 2025-04-07Bibliografiskt granskad

Open Access i DiVA

fulltext(7639 kB)24 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 7639 kBChecksumma SHA-512
bd1b503fe8759d14a0e49d64ea8a4238302cc43e2aeb12fed6a78293d5a29d9905bbdc3779a37cd4f16c26d90be7d60aa9640684ebe700777852440be2090047
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Abrahamsson, AlvaBerner, AndreasGolebiewska-Pikula, JustynaChaudhari, NamrataKeskitalo, EmelieLindgren, CeciliaWanrooij, SjoerdChorell, Erik

Sök vidare i DiVA

Av författaren/redaktören
Abrahamsson, AlvaBerner, AndreasGolebiewska-Pikula, JustynaChaudhari, NamrataKeskitalo, EmelieLindgren, CeciliaChmielewski, Marcin K.Wanrooij, SjoerdChorell, Erik
Av organisationen
Kemiska institutionenInstitutionen för medicinsk kemi och biofysik
I samma tidskrift
Bioconjugate chemistry
Biokemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 25 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 264 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf