Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterisation of two novel rhoptry proteins in Plasmodium: implications for host cell interaction and disease progression In Vivo
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, 1686, Argentina.ORCID-id: 0000-0001-7318-489X
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).ORCID-id: 0000-0002-0618-4731
Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom.ORCID-id: 0009-0008-4845-0568
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).ORCID-id: 0000-0002-7851-5501
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Malaria, caused by Plasmodium parasites, claims over 600,000 deaths annually. Parasite invasion of red blood cells (RBCs) involves protein secretion from specialised organelles— micronemes, rhoptries, and dense granules—to facilitate host cell entry and establish a protective parasitophorous vacuole (PV). Despite the critical role of rhoptry proteins in infection, many remain poorly characterised due to the absence of recognisable trafficking motifs and dispensability in vitro. Here, we leverage spatial proteomics from Plasmodium falciparum to identify two novel Plasmodium berghei ortholog proteins associated with the PV (MAP1, PBANKA_1425900 and RhoSH, PBANKA_1001500) both containing hydrolase domains. Ultra-expansion microscopy reveals their localisation to the rhoptries in late schizogony, while co-immunoprecipitation shows their interaction. In vivo studies demonstrate that these proteins help the parasite evade spleen-mediated clearance and contribute to disease progression. One protein, MAP1, mediates sequestration to adipose tissue, and conditional knockdown of its P. falciparum ortholog results in reduced CD36-mediated cytoadhesion, suggesting a mechanism for immune evasion and sustained infection. Our findings identify MAP1 and RhoSH as key mediators of Plasmodium virulence. Takingadvantage of an in vivo approach, this work provides valuable insights toward global malaria eradication efforts as it lays the groundwork for novel therapeutic strategies, positioning mainly MAP1 but also RhoSH as promising targets, including their use as antigens in recombinant vaccines, attenuated live vaccine candidates, or enzyme-inhibiting drugs.

Nationell ämneskategori
Cell- och molekylärbiologi
Forskningsämne
molekylärbiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-238662OAI: oai:DiVA.org:umu-238662DiVA, id: diva2:1957590
Tillgänglig från: 2025-05-12 Skapad: 2025-05-12 Senast uppdaterad: 2025-05-12Bibliografiskt granskad
Ingår i avhandling
1. Characterisation of proteins along the secretory pathway in the blood stages of the malaria parasite Plasmodium berghei
Öppna denna publikation i ny flik eller fönster >>Characterisation of proteins along the secretory pathway in the blood stages of the malaria parasite Plasmodium berghei
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Karakterisering av proteiner som utsöndras av parasiten i blodstadierna av malariaparasiten Plasmodium berghei
Abstract [en]

Malaria remains a major global health concern that threatens 40% of the world’s population, particularly in low-income tropical and subtropical regions. High malaria transmission countries experience a 1.3% reduction in economic growth due to the consequences of the disease. Additionally, young children and pregnant women are at the highest risk of developing severe disease. Despite advancements in the development of antimalarial drugs and vector control strategies, the disease is yet to be eradicated. The emergence of drug resistance, the lack of a highly effective vaccine, and incomplete transmission control emphasize the relevance of continued research towards malaria eradication. This body of work addresses critical gaps in understanding Plasmodium biology and host-parasite interactions that underpin malaria pathogenesis.

A better understanding of the parasite’s underlying biology is crucial to developing interventions for malaria. Nearly half of the Plasmodium genome is predicted to be essential for parasite survival, yet much of it remains uncharacterized—highlighting a pool of potential targets for novel treatments and vaccines. Uncovering the function of essential genes in Plasmodium has been difficult due to the low genetic tractability of the parasite. In manuscript 1, we present a scalable CRISPR-based genome editing system for the ubiquitously used rodent malaria model parasite Plasmodium berghei called PbHiT. This platform enables efficient and high-throughput functional genetic screening of parasite genes, using knockout or epitope tagging vectors that efficiently integrate into the target locus, providing a novel tool for malaria research that can be tailored to study essential genes. We provide vector designs and sequences to target the entire P. berghei genome and scale-up vector production using a pooled ligation approach. This work presents the first tool for high-throughput CRISPR screens in Plasmodium for studying the parasite’s biology at scale.

Malaria pathogenesis and the development of symptoms are closely tied to the asexual blood stage of the parasite. The parasite invades and remodels host red blood cells (RBCs), exporting approximately 10% of its proteome to alter host cell structure and function to support its survival. These modifications enhance nutrient uptake, increase cell rigidity, and enable cytoadherence of infected RBCs (iRBCs) to vascular endothelium. Cytoadherence promotes parasite growth through organ sequestration and immune evasion by prevention of clearance by the spleen and contributes to severe disease. While proteins such as PfEMP1 and host receptor CD36 are known to mediate cytoadherence in the human malaria parasite Plasmodium falciparum, the analogous parasite factors in the rodent model P. berghei remain largely undefined. In manuscript 2, we identify a novel P. berghei protein, EMAP3, which localizes to the iRBC membrane and interacts with the exported protein EMAP1. Deletion of EMAP3 does not affect sequestration, however, its external localization makes it a potentially valuable scaffold for displaying P. falciparum proteins, enabling in vivo screening of cytoadherence inhibitors. Continuing the focus on parasite proteins that mediate interactions with the host, manuscript 3 investigates two previously uncharacterized rhoptry-associated proteins, MAP1 and RhoSH, shown to be implicated in parasite virulence. These proteins are localized to parasite secretory organelles called the rhoptries and are likely injected into the host cell upon infection where they function to form or maintain the protective vacuole the parasite creates upon infection.  Notably, MAP1 contributes to adipose tissue sequestration and MAP1 knockout parasites fail to induce host leptin production, which is associated with severe disease. Together, these findings advance our understanding of parasite-host interactions during the blood stage and help identify new molecular targets for therapeutic intervention and malaria eradication strategies.

Ort, förlag, år, upplaga, sidor
Umeå University, 2025. s. 53
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2365
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-238663 (URN)978-91-8070-720-6 (ISBN)978-91-8070-721-3 (ISBN)
Disputation
2025-06-05, Major Groove, Norrlands universitetssjukhus, Umeå University Hospital, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-05-15 Skapad: 2025-05-12 Senast uppdaterad: 2025-05-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Paoletta, MartinaJonsdottir, Thorey K.Hernandez, Sophia Raine C.Rayon Diaz, MariaBerg, AlexandraPandey, VikashBerntsson, RonnieBushell, Ellen

Sök vidare i DiVA

Av författaren/redaktören
Paoletta, MartinaJonsdottir, Thorey K.Kemp, AlisonHernandez, Sophia Raine C.Chisholm, ScottRayon Diaz, MariaBerg, AlexandraPandey, VikashBerntsson, RonnieWaller, RossRayner, JulianBushell, Ellen
Av organisationen
Institutionen för molekylärbiologi (Medicinska fakulteten)Molekylär Infektionsmedicin, Sverige (MIMS)Institutionen för medicinsk kemi och biofysikInstitutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet)Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM)Umeå Centre for Microbial Research (UCMR)
Cell- och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 647 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf