Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Generating explanations for molecular property predictions in graph neural networks
Aalto University, Espoo, Finland; WMG, University of Warwick, Coventry, United Kingdom.
Aalto University, Espoo, Finland.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Aalto University, Espoo, Finland.ORCID-id: 0000-0002-8078-5172
2025 (Engelska)Ingår i: Advances in explainability, agents, and large language models: first international workshop on causality, agents and large models, CALM 2024, Kyoto, Japan, November 18–19, 2024, proceedings / [ed] Yazan Mualla; Liuwen Yu; Davide Liga; Igor Tchappi; Réka Markovich, Cham: Springer, 2025, s. 20-32Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Graph neural networks have helped researchers overcome the challenges of deep learning on graphs in non-Euclidean space. Like most deep learning algorithms, although the prediction of the models produces good results, explaining the predictions of the model is often challenging. This paper will focus on applying graph neural networks to predict the properties of the various molecules in the molecular datasets. The aim is to explore the generation of explanations for molecule property predictions. The four graph neural networks and seven explainers are chosen to generate and compare the quality of the explanations that are given by the explainers for each of the model predictions. The quality of this explanation is measured by sparsity, fidelity, and fidelity inverse. It is observed that various models find it difficult to learn the node embeddings when there is a class imbalance; despite the models achieving a 75% accuracy and the F1_Score was 66%. It is also observed that for all datasets, sparsity had a statistically significant effect on fidelity; that is, as more important features are masked, the quality of the explanation reduces. The effect of sparsity on fidelity inverse varied from dataset to dataset; as more unimportant features were masked, the quality of the explanations improved in some datasets, yet the change was not significant in other datasets. Finally, it was observed that the explanation quality differs across models. However, larger neural networks produced better predictions in our experiments, and the quality of the explanation of those predictions was not lower than that of smaller neural networks.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2025. s. 20-32
Serie
Communications in Computer and Information Science, ISSN 1865-0929, E-ISSN 1865-0937 ; 2471
Nyckelord [en]
Explainability, Graph Neural networks, Molecular properties
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-238729DOI: 10.1007/978-3-031-89103-8_2Scopus ID: 2-s2.0-105004255003ISBN: 978-3-031-89102-1 (tryckt)ISBN: 978-3-031-89103-8 (digital)OAI: oai:DiVA.org:umu-238729DiVA, id: diva2:1958078
Konferens
1st International Workshop on Causality, Agents and Large Models, CALM 2024, Kyoto, Japan, November 18-19, 2024
Tillgänglig från: 2025-05-13 Skapad: 2025-05-13 Senast uppdaterad: 2025-05-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Främling, Kary

Sök vidare i DiVA

Av författaren/redaktören
Främling, Kary
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 16 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf